IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v98y2012icp301-306.html
   My bibliography  Save this article

Analysis of the life-cycle costs and environmental impacts of cooking fuels used in Ghana

Author

Listed:
  • Afrane, George
  • Ntiamoah, Augustine

Abstract

This study evaluated the life-cycle costs and environmental impacts of fuels used in Ghanaian households for cooking. The analysis covered all the common cooking energy sources, namely, firewood, charcoal, kerosene, liquefied petroleum gas, electricity and even biogas, whose use is not as widespread as the others. In addition to the usual costing methods, the Environmental Product Strategies approach (EPS) of Steen and co-workers, which is based on the concept of ‘willingness-to-pay’ for the restoration of degraded systems, is used to monetise the emissions from the cookstoves. The results indicate that firewood, one of the popular woodfuels in Ghana and other developing countries, with an annual environmental damage cost of US$36,497 per household, is more than one order of magnitude less desirable than charcoal, the nearest fuel on the same scale, at US$3120. This method of representing the results of environmental analysis is complementary to the usual gravimetric life-cycle assessment (LCA) representation, and brings home clearly to decision-makers, especially non-LCA practitioners, the significance of environmental analysis results in terms that are familiar to all.

Suggested Citation

  • Afrane, George & Ntiamoah, Augustine, 2012. "Analysis of the life-cycle costs and environmental impacts of cooking fuels used in Ghana," Applied Energy, Elsevier, vol. 98(C), pages 301-306.
  • Handle: RePEc:eee:appene:v:98:y:2012:i:c:p:301-306
    DOI: 10.1016/j.apenergy.2012.03.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912002590
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.03.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anozie, A.N. & Bakare, A.R. & Sonibare, J.A. & Oyebisi, T.O., 2007. "Evaluation of cooking energy cost, efficiency, impact on air pollution and policy in Nigeria," Energy, Elsevier, vol. 32(7), pages 1283-1290.
    2. Tucker, Michael, 1999. "Can solar cooking save the forests?," Ecological Economics, Elsevier, vol. 31(1), pages 77-89, October.
    3. Viswanathan, Brinda & Kavi Kumar, K. S., 2005. "Cooking fuel use patterns in India: 1983-2000," Energy Policy, Elsevier, vol. 33(8), pages 1021-1036, May.
    4. Foell, Wesley & Pachauri, Shonali & Spreng, Daniel & Zerriffi, Hisham, 2011. "Household cooking fuels and technologies in developing economies," Energy Policy, Elsevier, vol. 39(12), pages 7487-7496.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Longo, Sonia & Cellura, Maurizio & Luu, Le Quyen & Nguyen, Thanh Quang & Rincione, Roberta & Guarino, Francesco, 2024. "Circular economy and life cycle thinking applied to the biomass supply chain: A review," Renewable Energy, Elsevier, vol. 220(C).
    2. Noah Ver Beek & Elvin Vindel & Matthew Kuperus Heun & Paul E. Brockway, 2020. "Quantifying the Environmental Impacts of Cookstove Transitions: A Societal Exergy Analysis Based Model of Energy Consumption and Forest Stocks in Honduras," Energies, MDPI, vol. 13(12), pages 1-22, June.
    3. Dong, Jun & Chi, Yong & Zou, Daoan & Fu, Chao & Huang, Qunxing & Ni, Mingjiang, 2014. "Energy–environment–economy assessment of waste management systems from a life cycle perspective: Model development and case study," Applied Energy, Elsevier, vol. 114(C), pages 400-408.
    4. Wilson, D.L. & Talancon, D.R. & Winslow, R.L. & Linares, X. & Gadgil, A.J., 2016. "Avoided emissions of a fuel-efficient biomass cookstove dwarf embodied emissions," Development Engineering, Elsevier, vol. 1(C), pages 45-52.
    5. Azimoh, Chukwuma Leonard & Wallin, Fredrik & Klintenberg, Patrik & Karlsson, Björn, 2014. "An assessment of unforeseen losses resulting from inappropriate use of solar home systems in South Africa," Applied Energy, Elsevier, vol. 136(C), pages 336-346.
    6. Porzio, Giacomo Filippo & Colla, Valentina & Fornai, Barbara & Vannucci, Marco & Larsson, Mikael & Stripple, Håkan, 2016. "Process integration analysis and some economic-environmental implications for an innovative environmentally friendly recovery and pre-treatment of steel scrap," Applied Energy, Elsevier, vol. 161(C), pages 656-672.
    7. Dongli Tan & Yao Wu & Zhiqing Zhang & Yue Jiao & Lingchao Zeng & Yujun Meng, 2023. "Assessing the Life Cycle Sustainability of Solar Energy Production Systems: A Toolkit Review in the Context of Ensuring Environmental Performance Improvements," Sustainability, MDPI, vol. 15(15), pages 1-37, July.
    8. Diener, Stefan & Semiyaga, Swaib & Niwagaba, Charles B. & Muspratt, Ashley Murray & Gning, Jean Birane & Mbéguéré, Mbaye & Ennin, Joseph Effah & Zurbrugg, Christian & Strande, Linda, 2014. "A value proposition: Resource recovery from faecal sludge—Can it be the driver for improved sanitation?," Resources, Conservation & Recycling, Elsevier, vol. 88(C), pages 32-38.
    9. Patel, Sameer & Khandelwal, Anish & Leavey, Anna & Biswas, Pratim, 2016. "A model for cost-benefit analysis of cooking fuel alternatives from a rural Indian household perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 291-302.
    10. Topriska, Evangelia & Kolokotroni, Maria & Dehouche, Zahir & Novieto, Divine T. & Wilson, Earle A., 2016. "The potential to generate solar hydrogen for cooking applications: Case studies of Ghana, Jamaica and Indonesia," Renewable Energy, Elsevier, vol. 95(C), pages 495-509.
    11. Malla, Sunil & Timilsina, Govinda R, 2014. "Household cooking fuel choice and adoption of improved cookstoves in developing countries : a review," Policy Research Working Paper Series 6903, The World Bank.
    12. Kim, Jiyong & Miller, James E. & Maravelias, Christos T. & Stechel, Ellen B., 2013. "Comparative analysis of environmental impact of S2P (Sunshine to Petrol) system for transportation fuel production," Applied Energy, Elsevier, vol. 111(C), pages 1089-1098.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andadari, Roos Kities & Mulder, Peter & Rietveld, Piet, 2014. "Energy poverty reduction by fuel switching. Impact evaluation of the LPG conversion program in Indonesia," Energy Policy, Elsevier, vol. 66(C), pages 436-449.
    2. Vanschoenwinkel, Janka & Lizin, Sebastien & Swinnen, Gilbert & Azadi, Hossein & Van Passel, Steven, 2014. "Solar cooking in Senegalese villages: An application of best–worst scaling," Energy Policy, Elsevier, vol. 67(C), pages 447-458.
    3. Indora, Sunil & Kandpal, Tara C., 2018. "Institutional cooking with solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 131-154.
    4. Gebru, Bahre & Elofsson, Katarina, 2023. "The role of forest status in households’ fuel choice in Uganda," Energy Policy, Elsevier, vol. 173(C).
    5. Basole, Amit & Basu, Deepankar, 2015. "Fuelling Calorie Intake Decline: Household-Level Evidence from Rural India," World Development, Elsevier, vol. 68(C), pages 82-95.
    6. Ding, Wenguang & Wang, Lijun & Chen, Baoyu & Xu, Luan & Li, Haoxu, 2014. "Impacts of renewable energy on gender in rural communities of north-west China," Renewable Energy, Elsevier, vol. 69(C), pages 180-189.
    7. Jacopo Bonan & Stefano Pareglio & Massimo Tavoni, 2014. "Access to Modern Energy: a Review of Impact Evaluations," Working Papers 2014.96, Fondazione Eni Enrico Mattei.
    8. Giwa, Adewale & Alabi, Adetunji & Yusuf, Ahmed & Olukan, Tuza, 2017. "A comprehensive review on biomass and solar energy for sustainable energy generation in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 620-641.
    9. Cheng, Chao-yo & Urpelainen, Johannes, 2014. "Fuel stacking in India: Changes in the cooking and lighting mix, 1987–2010," Energy, Elsevier, vol. 76(C), pages 306-317.
    10. Sony Baral & Bijendra Basnyat & Kalyan Gauli & Ambika Paudel & Rachana Upadhyaya & Yajna Prasad Timilsina & Harald Vacik, 2019. "Factors Affecting Fuelwood Consumption and CO 2 Emissions: An Example from a Community-Managed Forest of Nepal," Energies, MDPI, vol. 12(23), pages 1-12, November.
    11. Niklas Vahlne & Erik O. Ahlgren, 2014. "Energy Efficiency at the Base of the Pyramid: A System-Based Market Model for Improved Cooking Stove Adoption," Sustainability, MDPI, vol. 6(12), pages 1-21, November.
    12. Jagger, Pamela & Shively, Gerald, 2014. "Land use change, fuel use and respiratory health in Uganda," Energy Policy, Elsevier, vol. 67(C), pages 713-726.
    13. Kumar, Naveen & Vishwanath, G. & Gupta, Anurag, 2011. "An exergy based test protocol for truncated pyramid type solar box cooker," Energy, Elsevier, vol. 36(9), pages 5710-5715.
    14. Topriska, Evangelia & Kolokotroni, Maria & Dehouche, Zahir & Novieto, Divine T. & Wilson, Earle A., 2016. "The potential to generate solar hydrogen for cooking applications: Case studies of Ghana, Jamaica and Indonesia," Renewable Energy, Elsevier, vol. 95(C), pages 495-509.
    15. Harry Hoffmann & Götz Uckert & Constance Rybak & Frieder Graef & Klas Sander & Stefan Sieber, 2018. "Efficiency scenarios of charcoal production and consumption – a village case study from Western Tanzania," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 10(4), pages 925-938, August.
    16. Gould, Carlos F. & Schlesinger, Samuel B. & Molina, Emilio & Bejarano, M. Lorena & Valarezo, Alfredo & Jack, Darby W., 2020. "Household fuel mixes in peri-urban and rural Ecuador: Explaining the context of LPG, patterns of continued firewood use, and the challenges of induction cooking," Energy Policy, Elsevier, vol. 136(C).
    17. Vahlne, Niklas, 2017. "On LPG usage in rural Vietnamese households," Development Engineering, Elsevier, vol. 2(C), pages 1-11.
    18. Jingwen Wu & Bingdong Hou & Ruo-Yu Ke & Yun-Fei Du & Ce Wang & Xiangzheng Li & Jiawei Cai & Tianqi Chen & Meixuan Teng & Jin Liu & Jin-Wei Wang & Hua Liao, 2017. "Residential Fuel Choice in Rural Areas: Field Research of Two Counties of North China," Sustainability, MDPI, vol. 9(4), pages 1-16, April.
    19. Sehjpal, Ritika & Ramji, Aditya & Soni, Anmol & Kumar, Atul, 2014. "Going beyond incomes: Dimensions of cooking energy transitions in rural India," Energy, Elsevier, vol. 68(C), pages 470-477.
    20. Mirza, Bilal & Kemp, Rene, 2009. "Why Rural Rich Remain Energy Poor," MERIT Working Papers 2009-024, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:98:y:2012:i:c:p:301-306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.