IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i4p609-d95839.html
   My bibliography  Save this article

Residential Fuel Choice in Rural Areas: Field Research of Two Counties of North China

Author

Listed:
  • Jingwen Wu

    (School of Management and Economics, Beijing Institute of Technology, Beijing 100081, China
    Center for Energy and Environmental Policy Research, Beijing Institute of Technology, Beijing 100081, China
    Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081, China
    Sustainable Development Research Institute for Economy and Society of Beijing, Beijing 100081, China)

  • Bingdong Hou

    (School of Management and Economics, Beijing Institute of Technology, Beijing 100081, China
    Center for Energy and Environmental Policy Research, Beijing Institute of Technology, Beijing 100081, China
    Sustainable Development Research Institute for Economy and Society of Beijing, Beijing 100081, China
    Beijing Key Laboratory of Energy Economics and Environmental Management, Beijing 100081, China)

  • Ruo-Yu Ke

    (School of Management and Economics, Beijing Institute of Technology, Beijing 100081, China
    Center for Energy and Environmental Policy Research, Beijing Institute of Technology, Beijing 100081, China
    Sustainable Development Research Institute for Economy and Society of Beijing, Beijing 100081, China
    Beijing Key Laboratory of Energy Economics and Environmental Management, Beijing 100081, China)

  • Yun-Fei Du

    (School of Management and Economics, Beijing Institute of Technology, Beijing 100081, China
    Center for Energy and Environmental Policy Research, Beijing Institute of Technology, Beijing 100081, China
    Sustainable Development Research Institute for Economy and Society of Beijing, Beijing 100081, China
    Beijing Key Laboratory of Energy Economics and Environmental Management, Beijing 100081, China)

  • Ce Wang

    (School of Management and Economics, Beijing Institute of Technology, Beijing 100081, China
    Center for Energy and Environmental Policy Research, Beijing Institute of Technology, Beijing 100081, China
    Sustainable Development Research Institute for Economy and Society of Beijing, Beijing 100081, China
    Beijing Key Laboratory of Energy Economics and Environmental Management, Beijing 100081, China)

  • Xiangzheng Li

    (School of Management and Economics, Beijing Institute of Technology, Beijing 100081, China
    Center for Energy and Environmental Policy Research, Beijing Institute of Technology, Beijing 100081, China
    Sustainable Development Research Institute for Economy and Society of Beijing, Beijing 100081, China
    Beijing Key Laboratory of Energy Economics and Environmental Management, Beijing 100081, China)

  • Jiawei Cai

    (School of Management and Economics, Beijing Institute of Technology, Beijing 100081, China
    Center for Energy and Environmental Policy Research, Beijing Institute of Technology, Beijing 100081, China
    Sustainable Development Research Institute for Economy and Society of Beijing, Beijing 100081, China
    Beijing Key Laboratory of Energy Economics and Environmental Management, Beijing 100081, China)

  • Tianqi Chen

    (School of Management and Economics, Beijing Institute of Technology, Beijing 100081, China
    Center for Energy and Environmental Policy Research, Beijing Institute of Technology, Beijing 100081, China
    Sustainable Development Research Institute for Economy and Society of Beijing, Beijing 100081, China
    Beijing Key Laboratory of Energy Economics and Environmental Management, Beijing 100081, China)

  • Meixuan Teng

    (School of Management and Economics, Beijing Institute of Technology, Beijing 100081, China
    Center for Energy and Environmental Policy Research, Beijing Institute of Technology, Beijing 100081, China
    Sustainable Development Research Institute for Economy and Society of Beijing, Beijing 100081, China
    Beijing Key Laboratory of Energy Economics and Environmental Management, Beijing 100081, China)

  • Jin Liu

    (School of Management and Economics, Beijing Institute of Technology, Beijing 100081, China
    Center for Energy and Environmental Policy Research, Beijing Institute of Technology, Beijing 100081, China
    Sustainable Development Research Institute for Economy and Society of Beijing, Beijing 100081, China
    Beijing Key Laboratory of Energy Economics and Environmental Management, Beijing 100081, China)

  • Jin-Wei Wang

    (School of Management and Economics, Beijing Institute of Technology, Beijing 100081, China
    Center for Energy and Environmental Policy Research, Beijing Institute of Technology, Beijing 100081, China
    Sustainable Development Research Institute for Economy and Society of Beijing, Beijing 100081, China
    Beijing Key Laboratory of Energy Economics and Environmental Management, Beijing 100081, China)

  • Hua Liao

    (School of Management and Economics, Beijing Institute of Technology, Beijing 100081, China
    Center for Energy and Environmental Policy Research, Beijing Institute of Technology, Beijing 100081, China
    Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081, China
    Sustainable Development Research Institute for Economy and Society of Beijing, Beijing 100081, China)

Abstract

Solid fuels are still widely used in rural China though the living standard has improved greatly. Energy poverty is an obvious indicator of poverty, which has serious effects on economic development, environment, and health. In this paper, we conducted a detailed analysis on fuel choice and usage behavior of different end-use activities in rural residential energy consumption. Using 717 household observations from micro-survey data in two counties of Shandong and Hebei province in 2016, we find that biomass is the dominant fuel used for cooking among all energy sources despite of obvious decreasing trend in recent years, accounting for 44%. Clean energy used to cook increased markedly with a proportion of nearly 50%. Solar energy is an ordinary fuel used for water heating except for biomass. Almost 90% of households rely on coal for space heating in winter, and one-third of households have space heating for fewer than two months. Ownership of home appliances for basic needs is higher than that for hedonistic needs, and usage behaviors of some appliances are economical. Fuel accessibility of commercial energy have improved noticeably in rural areas, and the high proportion usage of biomass is affected by family income, usage habits, local resources, environmental recognition, education, and age. Since the negative effects of using solid fuels, it is urgent to cleanse biomass, develop new energy, and improve residents’ cognition about the consequences of using solid fuels.

Suggested Citation

  • Jingwen Wu & Bingdong Hou & Ruo-Yu Ke & Yun-Fei Du & Ce Wang & Xiangzheng Li & Jiawei Cai & Tianqi Chen & Meixuan Teng & Jin Liu & Jin-Wei Wang & Hua Liao, 2017. "Residential Fuel Choice in Rural Areas: Field Research of Two Counties of North China," Sustainability, MDPI, vol. 9(4), pages 1-16, April.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:4:p:609-:d:95839
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/4/609/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/4/609/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Démurger, Sylvie & Fournier, Martin, 2011. "Poverty and firewood consumption: A case study of rural households in northern China," China Economic Review, Elsevier, vol. 22(4), pages 512-523.
    2. Zhou, Zhongren & Wu, Wenliang & Chen, Qun & Chen, Shufeng, 2008. "Study on sustainable development of rural household energy in northern China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(8), pages 2227-2239, October.
    3. Chen, Yu & Yang, Gaihe & Sweeney, Sandra & Feng, Yongzhong, 2010. "Household biogas use in rural China: A study of opportunities and constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 545-549, January.
    4. Ji, Li-Qun, 2015. "An assessment of agricultural residue resources for liquid biofuel production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 561-575.
    5. Zheng, Xinye & Wei, Chu & Qin, Ping & Guo, Jin & Yu, Yihua & Song, Feng & Chen, Zhanming, 2014. "Characteristics of residential energy consumption in China: Findings from a household survey," Energy Policy, Elsevier, vol. 75(C), pages 126-135.
    6. Han, Jingyi & Mol, Arthur P.J. & Lu, Yonglong & Zhang, Lei, 2008. "Small-scale bioenergy projects in rural China: Lessons to be learnt," Energy Policy, Elsevier, vol. 36(6), pages 2154-2162, June.
    7. Niu, Shuwen & Zhang, Xin & Zhao, Chunsheng & Niu, Yunzhu, 2012. "Variations in energy consumption and survival status between rural and urban households: A case study of the Western Loess Plateau, China," Energy Policy, Elsevier, vol. 49(C), pages 515-527.
    8. Sanchez, Marla C. & Brown, Richard E. & Webber, Carrie & Homan, Gregory K., 2008. "Savings estimates for the United States Environmental Protection Agency's ENERGY STAR voluntary product labeling program," Energy Policy, Elsevier, vol. 36(6), pages 2098-2108, June.
    9. Srivastava, Leena & Goswami, Anandajit & Diljun, Gaurang Meher & Chaudhury, Saswata, 2012. "Energy access: Revelations from energy consumption patterns in rural India," Energy Policy, Elsevier, vol. 47(S1), pages 11-20.
    10. Bansal, Mohit & Saini, R.P. & Khatod, D.K., 2013. "Development of cooking sector in rural areas in India—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 44-53.
    11. Cai, Jing & Jiang, Zhigang, 2008. "Changing of energy consumption patterns from rural households to urban households in China: An example from Shaanxi Province, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(6), pages 1667-1680, August.
    12. Wang, Ke & Wang, Ya-Xuan & Li, Kang & Wei, Yi-Ming, 2015. "Energy poverty in China: An index based comprehensive evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 308-323.
    13. Chen, Yilin & Shen, Huizhong & Zhong, Qirui & Chen, Han & Huang, Tianbo & Liu, Junfeng & Cheng, Hefa & Zeng, Eddy Y. & Smith, Kirk R. & Tao, Shu, 2016. "Transition of household cookfuels in China from 2010 to 2012," Applied Energy, Elsevier, vol. 184(C), pages 800-809.
    14. San, Vibol & Sriv, Tharith & Spoann, Vin & Var, Sovanndara & Seak, Sophat, 2012. "Economic and environmental costs of rural household energy consumption structures in Sameakki Meanchey district, Kampong Chhnang Province, Cambodia," Energy, Elsevier, vol. 48(1), pages 484-491.
    15. Lee, Lisa Yu-Ting, 2013. "Household energy mix in Uganda," Energy Economics, Elsevier, vol. 39(C), pages 252-261.
    16. Li, Guozhu & Niu, Shuwen & Ma, Libang & Zhang, Xin, 2009. "Assessment of environmental and economic costs of rural household energy consumption in Loess Hilly Region, Gansu Province, China," Renewable Energy, Elsevier, vol. 34(6), pages 1438-1444.
    17. Schiellerup, P., 2002. "An examination of the effectiveness of the EU minimum standard on cold appliances: the British case," Energy Policy, Elsevier, vol. 30(4), pages 327-332, March.
    18. Zhang, Rui & Wei, Taoyuan & Glomsrød, Solveig & Shi, Qinghua, 2014. "Bioenergy consumption in rural China: Evidence from a survey in three provinces," Energy Policy, Elsevier, vol. 75(C), pages 136-145.
    19. Jiang, Zhixiang & Dai, Yanhui & Luo, Xianxiang & Liu, Guocheng & Wang, Hefang & Zheng, Hao & Wang, Zhenyu, 2017. "Assessment of bioenergy development potential and its environmental impact for rural household energy consumption: A case study in Shandong, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1153-1161.
    20. Zhang, Ming & Song, Yan & Li, Peng & Li, Huanan, 2016. "Study on affecting factors of residential energy consumption in urban and rural Jiangsu," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 330-337.
    21. Liao, Hua & Tang, Xin & Wei, Yi-Ming, 2016. "Solid fuel use in rural China and its health effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 900-908.
    22. Foell, Wesley & Pachauri, Shonali & Spreng, Daniel & Zerriffi, Hisham, 2011. "Household cooking fuels and technologies in developing economies," Energy Policy, Elsevier, vol. 39(12), pages 7487-7496.
    23. Cheng, Chao-yo & Urpelainen, Johannes, 2014. "Fuel stacking in India: Changes in the cooking and lighting mix, 1987–2010," Energy, Elsevier, vol. 76(C), pages 306-317.
    24. Kaygusuz, K., 2011. "Energy services and energy poverty for sustainable rural development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 936-947, February.
    25. Douglas Almond & Yuyu Chen & Michael Greenstone & Hongbin Li, 2009. "Winter Heating or Clean Air? Unintended Impacts of China's Huai River Policy," American Economic Review, American Economic Association, vol. 99(2), pages 184-190, May.
    26. Liu, H. & Jiang, G.M. & Zhuang, H.Y. & Wang, K.J., 2008. "Distribution, utilization structure and potential of biomass resources in rural China: With special references of crop residues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1402-1418, June.
    27. Zhang, Lixiao & Yang, Zhifeng & Chen, Bin & Chen, Guoqian, 2009. "Rural energy in China: Pattern and policy," Renewable Energy, Elsevier, vol. 34(12), pages 2813-2823.
    28. Smith, Kirk R. & Shuhua, Gu & Kun, Huang & Daxiong, Qiu, 1993. "One hundred million improved cookstoves in China: How was it done?," World Development, Elsevier, vol. 21(6), pages 941-961, June.
    29. Madubansi, M. & Shackleton, C.M., 2006. "Changing energy profiles and consumption patterns following electrification in five rural villages, South Africa," Energy Policy, Elsevier, vol. 34(18), pages 4081-4092, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Curtis, John & McCoy, Daire & Aravena, Claudia, 2018. "Heating system upgrades: The role of knowledge, socio-demographics, building attributes and energy infrastructure," Energy Policy, Elsevier, vol. 120(C), pages 183-196.
    2. Andante Hadi Pandyaswargo & Mengyi Ruan & Eiei Htwe & Motoshi Hiratsuka & Alan Dwi Wibowo & Yuji Nagai & Hiroshi Onoda, 2020. "Estimating the Energy Demand and Growth in Off-Grid Villages: Case Studies from Myanmar, Indonesia, and Laos," Energies, MDPI, vol. 13(20), pages 1-22, October.
    3. Chen, Qiu, 2021. "District or distributed space heating in rural residential sector? Empirical evidence from a discrete choice experiment in South China," Energy Policy, Elsevier, vol. 148(PA).
    4. Liexun Yang & Peng Zhou & Ning Zhang, 2017. "A Review of Low-Carbon Transformation and Energy Innovation Issues in China," Sustainability, MDPI, vol. 9(7), pages 1-6, July.
    5. Curtis, John & McCoy, Daire & Aravena Novielli, Claudia, 2017. "Determinants of residential heating system choice: an analysis of Irish households," Papers WP576, Economic and Social Research Institute (ESRI).
    6. Hou, Bingdong & Wu, Jingwen & Mi, Zhifu & Ma, Chunbo & Shi, Xunpeng & Liao, Hua, 2022. "Cooking fuel types and the health effects: A field study in China," Energy Policy, Elsevier, vol. 167(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingwen Wu & Bingdong Hou & Ruoyu Ke & Yun-Fei Du & Ce Wang & Xiangzheng Li & Jiawei Cai & Tianqi Chen & Meixuan Teng & Jin Liu & Jin-Wei Wang & Hua Liao, 2018. "Residential fuel choice in the rural: A field research on two counties of North China," CEEP-BIT Working Papers 109, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    2. Liu, Wenling & Spaargaren, Gert & Heerink, Nico & Mol, Arthur P.J. & Wang, Can, 2013. "Energy consumption practices of rural households in north China: Basic characteristics and potential for low carbon development," Energy Policy, Elsevier, vol. 55(C), pages 128-138.
    3. Niu, Shuwen & Li, Zhen & Qiu, Xin & Dai, Runqi & Wang, Xiang & Qiang, Wenli & Hong, Zhenguo, 2019. "Measurement of effective energy consumption in China's rural household sector and policy implication," Energy Policy, Elsevier, vol. 128(C), pages 553-564.
    4. Li, Jianglong & Chen, Chang & Liu, Hongxun, 2019. "Transition from non-commercial to commercial energy in rural China: Insights from the accessibility and affordability," Energy Policy, Elsevier, vol. 127(C), pages 392-403.
    5. Chen, Qiu & Liu, Tianbiao, 2017. "Biogas system in rural China: Upgrading from decentralized to centralized?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 933-944.
    6. Min He & Pei Liu & Linwei Ma & Chinhao Chong & Xu Li & Shizhong Song & Zheng Li & Weidou Ni, 2018. "A Systems Analysis of the Development Status and Trends of Rural Household Energy in China," Energies, MDPI, vol. 11(7), pages 1-23, July.
    7. Wang, Chengchao & Yang, Yusheng & Zhang, Yaoqi, 2012. "Rural household livelihood change, fuelwood substitution, and hilly ecosystem restoration: Evidence from China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2475-2482.
    8. Muller, Christophe & Yan, Huijie, 2018. "Household fuel use in developing countries: Review of theory and evidence," Energy Economics, Elsevier, vol. 70(C), pages 429-439.
    9. Lu Jiang & Xingpeng Chen & Bing Xue, 2019. "Features, Driving Forces and Transition of the Household Energy Consumption in China: A Review," Sustainability, MDPI, vol. 11(4), pages 1-20, February.
    10. Ma, Hengyun & Oxley, Les & Gibson, John & Li, Wen, 2010. "A survey of China's renewable energy economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 438-445, January.
    11. Li, Yunwei & Chen, Kui & Ding, Ruixin & Zhang, Jing & Hao, Yu, 2023. "How do photovoltaic poverty alleviation projects relieve household energy poverty? Evidence from China," Energy Economics, Elsevier, vol. 118(C).
    12. Qu, Mei & Lin, Ying & Liu, Can & Yao, Shunbo & Cao, Yang, 2016. "Farmers׳ perceptions of developing forest based bioenergy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 581-589.
    13. You, Jing & Kontoleon, Andreas & Wang, Sangui, 2015. "Identifying a Sustainable Pathway to Household Multi-dimensional Poverty Reduction in Rural China," 2015 Conference, August 9-14, 2015, Milan, Italy 211865, International Association of Agricultural Economists.
    14. Hongyun Han & Shu Wu, 2019. "Determinants of the Behavioral Lock-in of Rural Residents’ Direct Biomass Energy Consumption in China," Sustainability, MDPI, vol. 11(2), pages 1-25, January.
    15. Zhang, Shaohui & Guo, Qinxin & Smyth, Russell & Yao, Yao, 2022. "Extreme temperatures and residential electricity consumption: Evidence from Chinese households," Energy Economics, Elsevier, vol. 107(C).
    16. Yang, Jing & Song, Kaihui & Hou, Jian & Zhang, Peidong & Wu, Jinhu, 2017. "Temporal and spacial dynamics of bioenergy-related CO2 emissions and underlying forces analysis in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1323-1330.
    17. Zhikun Ding & Rongsheng Liu & Zongjie Li & Cheng Fan, 2020. "A Thematic Network-Based Methodology for the Research Trend Identification in Building Energy Management," Energies, MDPI, vol. 13(18), pages 1-33, September.
    18. Liu, Xuan & Hu, Ye & Xiao, Yan, 2017. "Risk management for rural energy industry of Sichuan Province in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1029-1044.
    19. Sun, Dingqiang & Bai, Junfei & Qiu, Huanguang & Cai, Yaqing, 2014. "Impact of government subsidies on household biogas use in rural China," Energy Policy, Elsevier, vol. 73(C), pages 748-756.
    20. He, Guizhen & Bluemling, Bettina & Mol, Arthur P.J. & Zhang, Lei & Lu, Yonglong, 2013. "Comparing centralized and decentralized bio-energy systems in rural China," Energy Policy, Elsevier, vol. 63(C), pages 34-43.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:4:p:609-:d:95839. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.