IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v97y2012icp347-354.html
   My bibliography  Save this article

Use of rubber crumbs as drainage layer in green roofs as potential energy improvement material

Author

Listed:
  • Pérez, Gabriel
  • Vila, Anna
  • Rincón, Lídia
  • Solé, Cristian
  • Cabeza, Luisa F.

Abstract

Today, green roofs are a building system which provides interesting benefits over traditional roof solutions. The most important advantages are the reduction of surface runoff in cities, improvement of the urban climate, biodiversity support, improvement of the durability of roofing materials, and, especially, energy savings. This paper has the aim of studying the performance of green roofs as a passive system for energy savings, within a wider objective of seeking constructive solutions suitable for sustainable and environmentally friendly architecture. This idea is tested at an experimental installation available at the University of Lleida, with several cubicles testing the energy performance of different construction solutions. This work raises the possibility of using recycled rubber from tires as a drainage layer in green roofs, substituting the porous stone materials currently used (such as expanded clay, expanded shale, pumice, and natural puzolana). This solution would reduce the consumption of these natural materials, which also require large amounts of energy in its transformation process to obtain their properties. Moreover it would provide a solution to the problem of waste rubber from the tires, known as rubber crumbs. Since the purpose of the drainage layer is the optimum balance between air and water in the green roof system, first the ability for draining of recycled rubber granules was studied and was compared with the offered by stone materials. The new solution using rubber crumbs is also studied to test if it would keep the same insulating properties that the green roof with stone materials presented in previous studies. Early results show that this extensive green roof system can be a good passive energy savings tool in Continental Mediterranean climate in summer, and that rubber crumbs can be an interesting substitute for stone materials used as drainage layer in this type of green roofs.

Suggested Citation

  • Pérez, Gabriel & Vila, Anna & Rincón, Lídia & Solé, Cristian & Cabeza, Luisa F., 2012. "Use of rubber crumbs as drainage layer in green roofs as potential energy improvement material," Applied Energy, Elsevier, vol. 97(C), pages 347-354.
  • Handle: RePEc:eee:appene:v:97:y:2012:i:c:p:347-354
    DOI: 10.1016/j.apenergy.2011.11.051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261911007562
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2011.11.051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Spala, A. & Bagiorgas, H.S. & Assimakopoulos, M.N. & Kalavrouziotis, J. & Matthopoulos, D. & Mihalakakou, G., 2008. "On the green roof system. Selection, state of the art and energy potential investigation of a system installed in an office building in Athens, Greece," Renewable Energy, Elsevier, vol. 33(1), pages 173-177.
    2. Santamouris, M. & Pavlou, C. & Doukas, P. & Mihalakakou, G. & Synnefa, A. & Hatzibiros, A. & Patargias, P., 2007. "Investigating and analysing the energy and environmental performance of an experimental green roof system installed in a nursery school building in Athens, Greece," Energy, Elsevier, vol. 32(9), pages 1781-1788.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ouldboukhitine, Salah-Eddine & Belarbi, Rafik & Sailor, David J., 2014. "Experimental and numerical investigation of urban street canyons to evaluate the impact of green roof inside and outside buildings," Applied Energy, Elsevier, vol. 114(C), pages 273-282.
    2. Nan Jiang & Weina Zou & Yi Lu & Ziman Liao & Lianglong Wu, 2024. "Using Recycled Construction Waste Materials with Varying Components and Particle Sizes for Extensive Green Roof Substrates: Assessment of Its Effects on Vegetation Development," Sustainability, MDPI, vol. 16(1), pages 1-15, January.
    3. Cabeza, Luisa F. & Rincón, Lídia & Vilariño, Virginia & Pérez, Gabriel & Castell, Albert, 2014. "Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 394-416.
    4. Yangang Xing & Phil Jones & Iain Donnison, 2017. "Characterisation of Nature-Based Solutions for the Built Environment," Sustainability, MDPI, vol. 9(1), pages 1-20, January.
    5. Kim, Jimin & Hong, Taehoon & Jeong, Jaemin & Koo, Choongwan & Jeong, Kwangbok, 2016. "An optimization model for selecting the optimal green systems by considering the thermal comfort and energy consumption," Applied Energy, Elsevier, vol. 169(C), pages 682-695.
    6. Brunetti, Giuseppe & Porti, Michele & Piro, Patrizia, 2018. "Multi-level numerical and statistical analysis of the hygrothermal behavior of a non-vegetated green roof in a mediterranean climate," Applied Energy, Elsevier, vol. 221(C), pages 204-219.
    7. Ricciardi, P. & Belloni, E. & Cotana, F., 2014. "Innovative panels with recycled materials: Thermal and acoustic performance and Life Cycle Assessment," Applied Energy, Elsevier, vol. 134(C), pages 150-162.
    8. Stefano Cascone, 2019. "Green Roof Design: State of the Art on Technology and Materials," Sustainability, MDPI, vol. 11(11), pages 1-27, May.
    9. Berardi, Umberto & GhaffarianHoseini, AmirHosein & GhaffarianHoseini, Ali, 2014. "State-of-the-art analysis of the environmental benefits of green roofs," Applied Energy, Elsevier, vol. 115(C), pages 411-428.
    10. Coma, Julià & Pérez, Gabriel & Solé, Cristian & Castell, Albert & Cabeza, Luisa F., 2016. "Thermal assessment of extensive green roofs as passive tool for energy savings in buildings," Renewable Energy, Elsevier, vol. 85(C), pages 1106-1115.
    11. Ana Isabel Abellán García & Noelia Cruz Pérez & Juan C. Santamarta, 2021. "Sustainable Urban Drainage Systems in Spain: Analysis of the Research on SUDS Based on Climatology," Sustainability, MDPI, vol. 13(13), pages 1-25, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ouldboukhitine, Salah-Eddine & Belarbi, Rafik & Sailor, David J., 2014. "Experimental and numerical investigation of urban street canyons to evaluate the impact of green roof inside and outside buildings," Applied Energy, Elsevier, vol. 114(C), pages 273-282.
    2. Bevilacqua, Piero, 2021. "The effectiveness of green roofs in reducing building energy consumptions across different climates. A summary of literature results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    3. Jim, C.Y., 2015. "Diurnal and partitioned heat-flux patterns of coupled green-building roof systems," Renewable Energy, Elsevier, vol. 81(C), pages 262-274.
    4. Jim, C.Y., 2014. "Passive warming of indoor space induced by tropical green roof in winter," Energy, Elsevier, vol. 68(C), pages 272-282.
    5. Saadatian, Omidreza & Sopian, K. & Salleh, E. & Lim, C.H. & Riffat, Safa & Saadatian, Elham & Toudeshki, Arash & Sulaiman, M.Y., 2013. "A review of energy aspects of green roofs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 155-168.
    6. Refahi, Amir Hossein & Talkhabi, Hossein, 2015. "Investigating the effective factors on the reduction of energy consumption in residential buildings with green roofs," Renewable Energy, Elsevier, vol. 80(C), pages 595-603.
    7. Chan, A.L.S. & Chow, T.T., 2013. "Evaluation of Overall Thermal Transfer Value (OTTV) for commercial buildings constructed with green roof," Applied Energy, Elsevier, vol. 107(C), pages 10-24.
    8. Lilliana L. H. Peng & C. Y. Jim, 2015. "Seasonal and Diurnal Thermal Performance of a Subtropical Extensive Green Roof: The Impacts of Background Weather Parameters," Sustainability, MDPI, vol. 7(8), pages 1-16, August.
    9. Raji, Babak & Tenpierik, Martin J. & van den Dobbelsteen, Andy, 2015. "The impact of greening systems on building energy performance: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 610-623.
    10. Lilliana L.H. Peng & C. Y. Jim, 2013. "Green-Roof Effects on Neighborhood Microclimate and Human Thermal Sensation," Energies, MDPI, vol. 6(2), pages 1-21, January.
    11. Jaffal, Issa & Ouldboukhitine, Salah-Eddine & Belarbi, Rafik, 2012. "A comprehensive study of the impact of green roofs on building energy performance," Renewable Energy, Elsevier, vol. 43(C), pages 157-164.
    12. Ferrante, Patrizia & La Gennusa, Maria & Peri, Giorgia & Rizzo, Gianfranco & Scaccianoce, Gianluca, 2016. "Vegetation growth parameters and leaf temperature: Experimental results from a six plots green roofs' system," Energy, Elsevier, vol. 115(P3), pages 1723-1732.
    13. Mihalakakou, Giouli & Souliotis, Manolis & Papadaki, Maria & Menounou, Penelope & Dimopoulos, Panayotis & Kolokotsa, Dionysia & Paravantis, John A. & Tsangrassoulis, Aris & Panaras, Giorgos & Giannako, 2023. "Green roofs as a nature-based solution for improving urban sustainability: Progress and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    14. Mario Maiolo & Behrouz Pirouz & Roberto Bruno & Stefania Anna Palermo & Natale Arcuri & Patrizia Piro, 2020. "The Role of the Extensive Green Roofs on Decreasing Building Energy Consumption in the Mediterranean Climate," Sustainability, MDPI, vol. 12(1), pages 1-13, January.
    15. Jim, C.Y., 2014. "Air-conditioning energy consumption due to green roofs with different building thermal insulation," Applied Energy, Elsevier, vol. 128(C), pages 49-59.
    16. Berardi, Umberto & GhaffarianHoseini, AmirHosein & GhaffarianHoseini, Ali, 2014. "State-of-the-art analysis of the environmental benefits of green roofs," Applied Energy, Elsevier, vol. 115(C), pages 411-428.
    17. Tsang, S.W. & Jim, C.Y., 2011. "Theoretical evaluation of thermal and energy performance of tropical green roofs," Energy, Elsevier, vol. 36(5), pages 3590-3598.
    18. Xiaobin Yang & Zhilong Chen & Hao Cai & Linjian Ma, 2014. "A Framework for Assessment of the Influence of China’s Urban Underground Space Developments on the Urban Microclimate," Sustainability, MDPI, vol. 6(12), pages 1-31, November.
    19. Joana Fernandes & Maria Catarina Santos & Rui Castro, 2021. "Introductory Review of Energy Efficiency in Buildings Retrofits," Energies, MDPI, vol. 14(23), pages 1-18, December.
    20. Tang, Mingfang & Zheng, Xing, 2019. "Experimental study of the thermal performance of an extensive green roof on sunny summer days," Applied Energy, Elsevier, vol. 242(C), pages 1010-1021.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:97:y:2012:i:c:p:347-354. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.