IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i1p414-d1312339.html
   My bibliography  Save this article

Using Recycled Construction Waste Materials with Varying Components and Particle Sizes for Extensive Green Roof Substrates: Assessment of Its Effects on Vegetation Development

Author

Listed:
  • Nan Jiang

    (College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China)

  • Weina Zou

    (College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
    Institute of Beautiful China and Ecological Civilization, University Think Tank of Shanghai Municipality, Shanghai 201418, China)

  • Yi Lu

    (College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China)

  • Ziman Liao

    (College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China)

  • Lianglong Wu

    (College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China)

Abstract

Using construction waste materials as substrates can reduce the resource consumption of minerals and provide sustainability benefits in green roofs. This research examined the viability of crushed bricks and crushed concrete with varying particle sizes as substrates by conducting a simulated drought experiment and roof experiment. Six composite substrates were prepared, respectively, by mixing peat with small-, medium-, and large-sized crushed bricks and crushed concrete particles (peat-to-inorganic-particle volume ratio of 1:2). The properties of each group were within acceptable parameters, with the crushed brick substrates displaying lower bulk density and higher porosity compared to the crushed concrete substrates. Seldom lineare was selected for the experiments, and the substrate thickness was set at 10 cm. Under the simulated drought conditions, the growth and stress resistance of Seldom lineare in the crushed brick substrates was similar to that in the conventional substrates and poorer in the crushed concrete substrates. Seldom lineare in medium-particle-size brick substrates performed the best, surpassing the traditional group. The growth of Seldom lineare in the small-particle-size concrete substrates was the worst. In the rooftop environment, all groups could support Seldom lineare over 180 days without maintenance, with an overall coverage of more than 60%. The plants in the medium-particle-size brick substrates exhibited the highest cover. In conclusion, the medium-particle-size brick substrate exhibits ideal characteristics in terms of substrate physical properties and plant growth, making it a favorable option.

Suggested Citation

  • Nan Jiang & Weina Zou & Yi Lu & Ziman Liao & Lianglong Wu, 2024. "Using Recycled Construction Waste Materials with Varying Components and Particle Sizes for Extensive Green Roof Substrates: Assessment of Its Effects on Vegetation Development," Sustainability, MDPI, vol. 16(1), pages 1-15, January.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:1:p:414-:d:1312339
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/1/414/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/1/414/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shafique, Muhammad & Kim, Reeho & Rafiq, Muhammad, 2018. "Green roof benefits, opportunities and challenges – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 757-773.
    2. Pérez, Gabriel & Vila, Anna & Rincón, Lídia & Solé, Cristian & Cabeza, Luisa F., 2012. "Use of rubber crumbs as drainage layer in green roofs as potential energy improvement material," Applied Energy, Elsevier, vol. 97(C), pages 347-354.
    3. Katya Coelho & João Almeida & Fernando Castro & André Ribeiro & Tiago Teixeira & Paulo Palha & Nuno Simões, 2022. "Experimental Characterisation of Different Ecological Substrates for Use in Green Roof Systems," Sustainability, MDPI, vol. 15(1), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Veerkamp, Clara J. & Schipper, Aafke M. & Hedlund, Katarina & Lazarova, Tanya & Nordin, Amanda & Hanson, Helena I., 2021. "A review of studies assessing ecosystem services provided by urban green and blue infrastructure," Ecosystem Services, Elsevier, vol. 52(C).
    2. Yangang Xing & Phil Jones & Iain Donnison, 2017. "Characterisation of Nature-Based Solutions for the Built Environment," Sustainability, MDPI, vol. 9(1), pages 1-20, January.
    3. Mihalakakou, Giouli & Souliotis, Manolis & Papadaki, Maria & Menounou, Penelope & Dimopoulos, Panayotis & Kolokotsa, Dionysia & Paravantis, John A. & Tsangrassoulis, Aris & Panaras, Giorgos & Giannako, 2023. "Green roofs as a nature-based solution for improving urban sustainability: Progress and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    4. Brunetti, Giuseppe & Porti, Michele & Piro, Patrizia, 2018. "Multi-level numerical and statistical analysis of the hygrothermal behavior of a non-vegetated green roof in a mediterranean climate," Applied Energy, Elsevier, vol. 221(C), pages 204-219.
    5. Sojung Kim & Burchan Aydin & Sumin Kim, 2021. "Simulation Modeling of a Photovoltaic-Green Roof System for Energy Cost Reduction of a Building: Texas Case Study," Energies, MDPI, vol. 14(17), pages 1-13, September.
    6. Grazia Napoli & Rossella Corrao & Gianluca Scaccianoce & Simona Barbaro & Laura Cirrincione, 2022. "Public and Private Economic Feasibility of Green Areas as a Passive Energy Measure: A Case Study in the Mediterranean City of Trapani in Southern Italy," Sustainability, MDPI, vol. 14(4), pages 1-20, February.
    7. Berardi, Umberto & GhaffarianHoseini, AmirHosein & GhaffarianHoseini, Ali, 2014. "State-of-the-art analysis of the environmental benefits of green roofs," Applied Energy, Elsevier, vol. 115(C), pages 411-428.
    8. Ricciardi, P. & Belloni, E. & Cotana, F., 2014. "Innovative panels with recycled materials: Thermal and acoustic performance and Life Cycle Assessment," Applied Energy, Elsevier, vol. 134(C), pages 150-162.
    9. Noemi Caltabellotta & Felicia Cavaleri & Carlo Greco & Kestutis Navickas & Carlo Scibetta & Laura Giammanco, 2019. "Integration of green roofs&walls in urban areas," RIVISTA DI STUDI SULLA SOSTENIBILITA', FrancoAngeli Editore, vol. 0(2 Suppl.), pages 61-78.
    10. Manso, Maria & Teotónio, Inês & Silva, Cristina Matos & Cruz, Carlos Oliveira, 2021. "Green roof and green wall benefits and costs: A review of the quantitative evidence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    11. Coma, Julià & Pérez, Gabriel & Solé, Cristian & Castell, Albert & Cabeza, Luisa F., 2016. "Thermal assessment of extensive green roofs as passive tool for energy savings in buildings," Renewable Energy, Elsevier, vol. 85(C), pages 1106-1115.
    12. Mo Wang & Xu Zhong & Chuanhao Sun & Tong Chen & Jin Su & Jianjun Li, 2023. "Comprehensive Performance of Green Infrastructure through a Life-Cycle Perspective: A Review," Sustainability, MDPI, vol. 15(14), pages 1-19, July.
    13. Alena Vargova & Sally Köhler & Sarina Hötzel & Bastian Schröter & Zuzana Vranayova & Daniela Kaposztasova, 2023. "Transformation of Urban Spaces: The Impact of Green Roofs in Košice, Slovakia," Sustainability, MDPI, vol. 16(1), pages 1-15, December.
    14. Stefano Cascone, 2019. "Green Roof Design: State of the Art on Technology and Materials," Sustainability, MDPI, vol. 11(11), pages 1-27, May.
    15. Liberalesso, Tiago & Oliveira Cruz, Carlos & Matos Silva, Cristina & Manso, Maria, 2020. "Green infrastructure and public policies: An international review of green roofs and green walls incentives," Land Use Policy, Elsevier, vol. 96(C).
    16. Carlos Rey-Mahía & Felipe Pedro Álvarez-Rabanal & Luis Angel Sañudo-Fontaneda & Mario Hidalgo-Tostado & Antonio Menéndez Suárez-Inclán, 2022. "An Experimental and Numerical Approach to Multifunctional Urban Surfaces through Blue Roofs," Sustainability, MDPI, vol. 14(3), pages 1-15, February.
    17. Fernando Alonso-Marroquin & Ghulam Qadir, 2023. "Synergy between Photovoltaic Panels and Green Roofs," Energies, MDPI, vol. 16(13), pages 1-17, July.
    18. Orynbayev Seitzhan & Fatin Khalida Abdul Khadir & Smailov Bakyt & Cheng Yee Ng & Husna Takaijudin & Noor Amila Wan Zawawi & Wesam Salah Alaloul & Muhammad Ali Musarat, 2023. "Assessment of the Implementation of Sustainable Stormwater Management Practices in Asian Countries," Sustainability, MDPI, vol. 15(21), pages 1-29, November.
    19. Ouldboukhitine, Salah-Eddine & Belarbi, Rafik & Sailor, David J., 2014. "Experimental and numerical investigation of urban street canyons to evaluate the impact of green roof inside and outside buildings," Applied Energy, Elsevier, vol. 114(C), pages 273-282.
    20. Cabeza, Luisa F. & Rincón, Lídia & Vilariño, Virginia & Pérez, Gabriel & Castell, Albert, 2014. "Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 394-416.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:1:p:414-:d:1312339. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.