IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v107y2013icp10-24.html
   My bibliography  Save this article

Evaluation of Overall Thermal Transfer Value (OTTV) for commercial buildings constructed with green roof

Author

Listed:
  • Chan, A.L.S.
  • Chow, T.T.

Abstract

Overall Thermal Transfer Value (OTTV) is a measure of average heat gain into a building through the building envelope. It is a widely adopted measure in many countries for enhancing energy-efficient building design. In the past decade, there is increasing application of green roof into commercial buildings for enhanced building insulation, leading to reduction in heat gain through the roof area as well as cooling requirement of a building. Since the current OTTV equations and coefficients were originally developed for buildings with traditional bare roof construction, building designers have difficulty to compute the OTTV for building constructed with green roof. The aim of this study is to revise the existing OTTV calculation method and derive a set of correction factors for OTTV evaluation of green roof integrated buildings. An experimental setup of a green roof system with sensors was installed on the rooftop of a commercial building. The measured data were used for validation of a building energy simulation program EnergyPlus incorporated with a green roof model Ecoroof. Four building cases with typical and traditional roof constructions were modeled using the validated computer simulation program. Through a series of parametric computer simulations, a correlation between OTTV and annual heat gain through the roof area was established with that a set of correction factors ranging from 0.03 to 0.99 was developed. Theses correction factors can be used by building designers to compute the OTTV of building constructed with green roof. The details of methodology and findings are reported in this paper.

Suggested Citation

  • Chan, A.L.S. & Chow, T.T., 2013. "Evaluation of Overall Thermal Transfer Value (OTTV) for commercial buildings constructed with green roof," Applied Energy, Elsevier, vol. 107(C), pages 10-24.
  • Handle: RePEc:eee:appene:v:107:y:2013:i:c:p:10-24
    DOI: 10.1016/j.apenergy.2013.02.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913001189
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.02.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chou, S.K. & Lee, Y.K., 1988. "A simplified overall thermal transfer value equation for building envelopes," Energy, Elsevier, vol. 13(8), pages 657-670.
    2. Hodo-Abalo, Samah & Banna, Magolmèèna & Zeghmati, Belkacem, 2012. "Performance analysis of a planted roof as a passive cooling technique in hot-humid tropics," Renewable Energy, Elsevier, vol. 39(1), pages 140-148.
    3. Spala, A. & Bagiorgas, H.S. & Assimakopoulos, M.N. & Kalavrouziotis, J. & Matthopoulos, D. & Mihalakakou, G., 2008. "On the green roof system. Selection, state of the art and energy potential investigation of a system installed in an office building in Athens, Greece," Renewable Energy, Elsevier, vol. 33(1), pages 173-177.
    4. Santamouris, M. & Pavlou, C. & Doukas, P. & Mihalakakou, G. & Synnefa, A. & Hatzibiros, A. & Patargias, P., 2007. "Investigating and analysing the energy and environmental performance of an experimental green roof system installed in a nursery school building in Athens, Greece," Energy, Elsevier, vol. 32(9), pages 1781-1788.
    5. Peri, Giorgia & Traverso, Marzia & Finkbeiner, Matthias & Rizzo, Gianfranco, 2012. "The cost of green roofs disposal in a life cycle perspective: Covering the gap," Energy, Elsevier, vol. 48(1), pages 406-414.
    6. Janda, Kathryn B. & Busch, John F., 1994. "Worldwide status of energy standards for buildings," Energy, Elsevier, vol. 19(1), pages 27-44.
    7. Chow, W.K. & Chan, K.T., 1992. "Overall thermal transfer values for building envelopes in Hong Kong," Applied Energy, Elsevier, vol. 42(4), pages 289-312.
    8. Yik, F.W.H & Wan, K.S.Y, 2005. "An evaluation of the appropriateness of using overall thermal transfer value (OTTV) to regulate envelope energy performance of air-conditioned buildings," Energy, Elsevier, vol. 30(1), pages 41-71.
    9. He, Hongming & Jim, C.Y., 2010. "Simulation of thermodynamic transmission in green roof ecosystem," Ecological Modelling, Elsevier, vol. 221(24), pages 2949-2958.
    10. Chua, K.J. & Chou, S.K., 2010. "Energy performance of residential buildings in Singapore," Energy, Elsevier, vol. 35(2), pages 667-678.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Yang & Yu, Hang & Ozaki, Akihito & Dong, Nannan & Zheng, Shiling, 2017. "Influence of plant and soil layer on energy balance and thermal performance of green roof system," Energy, Elsevier, vol. 141(C), pages 1285-1299.
    2. Tan, Taotao & Kong, Fanhua & Yin, Haiwei & Cook, Lauren M. & Middel, Ariane & Yang, Shaoqi, 2023. "Carbon dioxide reduction from green roofs: A comprehensive review of processes, factors, and quantitative methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    3. Habibi, Shahryar & Obonyo, Esther Adhiambo & Memari, Ali M., 2020. "Design and development of energy efficient re-roofing solutions," Renewable Energy, Elsevier, vol. 151(C), pages 1209-1219.
    4. Brunetti, Giuseppe & Porti, Michele & Piro, Patrizia, 2018. "Multi-level numerical and statistical analysis of the hygrothermal behavior of a non-vegetated green roof in a mediterranean climate," Applied Energy, Elsevier, vol. 221(C), pages 204-219.
    5. Tang, Mingfang & Zheng, Xing, 2019. "Experimental study of the thermal performance of an extensive green roof on sunny summer days," Applied Energy, Elsevier, vol. 242(C), pages 1010-1021.
    6. Berardi, Umberto & GhaffarianHoseini, AmirHosein & GhaffarianHoseini, Ali, 2014. "State-of-the-art analysis of the environmental benefits of green roofs," Applied Energy, Elsevier, vol. 115(C), pages 411-428.
    7. Raji, Babak & Tenpierik, Martin J. & van den Dobbelsteen, Andy, 2015. "The impact of greening systems on building energy performance: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 610-623.
    8. Zingre, Kishor T. & Wan, Man Pun & Yang, Xingguo, 2015. "A new RTTV (roof thermal transfer value) calculation method for cool roofs," Energy, Elsevier, vol. 81(C), pages 222-232.
    9. Byungyun Lee, 2019. "Heating, Cooling, and Lighting Energy Demand Simulation Analysis of Kinetic Shading Devices with Automatic Dimming Control for Asian Countries," Sustainability, MDPI, vol. 11(5), pages 1-20, February.
    10. Kokogiannakis, Georgios & Darkwa, Jo, 2014. "Support for the integration of green roof constructions within Chinese building energy performance policies," Energy, Elsevier, vol. 65(C), pages 71-79.
    11. Sara Di Lonardo & Susanna Mariani & Germina Giagnacovo & Antonella Marone & Salvatore Raimondi, 2019. "Green infrastructures for the energetic and environmental sustainability of cities," RIVISTA DI STUDI SULLA SOSTENIBILITA', FrancoAngeli Editore, vol. 0(2 Suppl.), pages 79-98.
    12. Lee, Louis S.H. & Jim, C.Y., 2019. "Energy benefits of green-wall shading based on novel-accurate apportionment of short-wave radiation components," Applied Energy, Elsevier, vol. 238(C), pages 1506-1518.
    13. Vera, Sergio & Pinto, Camilo & Tabares-Velasco, Paulo Cesar & Bustamante, Waldo, 2018. "A critical review of heat and mass transfer in vegetative roof models used in building energy and urban enviroment simulation tools," Applied Energy, Elsevier, vol. 232(C), pages 752-764.
    14. Hwang, Ruey-Lung & Shih, Wen-Mei & Lin, Tzu-Ping & Huang, Kuo-Tsang, 2018. "Simplification and adjustment of the energy consumption indices of office building envelopes in response to climate change," Applied Energy, Elsevier, vol. 230(C), pages 460-470.
    15. Germán Ramos Ruiz & Carlos Fernández Bandera, 2017. "Validation of Calibrated Energy Models: Common Errors," Energies, MDPI, vol. 10(10), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saadatian, Omidreza & Sopian, K. & Salleh, E. & Lim, C.H. & Riffat, Safa & Saadatian, Elham & Toudeshki, Arash & Sulaiman, M.Y., 2013. "A review of energy aspects of green roofs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 155-168.
    2. Yik, F.W.H & Wan, K.S.Y, 2005. "An evaluation of the appropriateness of using overall thermal transfer value (OTTV) to regulate envelope energy performance of air-conditioned buildings," Energy, Elsevier, vol. 30(1), pages 41-71.
    3. He, Yang & Yu, Hang & Ozaki, Akihito & Dong, Nannan & Zheng, Shiling, 2017. "Influence of plant and soil layer on energy balance and thermal performance of green roof system," Energy, Elsevier, vol. 141(C), pages 1285-1299.
    4. Zingre, Kishor T. & Wan, Man Pun & Tong, Shanshan & Li, Hua & Chang, Victor W.-C. & Wong, Swee Khian & Thian Toh, Winston Boo & Leng Lee, Irene Yen, 2015. "Modeling of cool roof heat transfer in tropical climate," Renewable Energy, Elsevier, vol. 75(C), pages 210-223.
    5. Ferrante, Patrizia & La Gennusa, Maria & Peri, Giorgia & Rizzo, Gianfranco & Scaccianoce, Gianluca, 2016. "Vegetation growth parameters and leaf temperature: Experimental results from a six plots green roofs' system," Energy, Elsevier, vol. 115(P3), pages 1723-1732.
    6. Pérez, Gabriel & Vila, Anna & Rincón, Lídia & Solé, Cristian & Cabeza, Luisa F., 2012. "Use of rubber crumbs as drainage layer in green roofs as potential energy improvement material," Applied Energy, Elsevier, vol. 97(C), pages 347-354.
    7. Vijayaraghavan, K., 2016. "Green roofs: A critical review on the role of components, benefits, limitations and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 740-752.
    8. Berardi, Umberto & GhaffarianHoseini, AmirHosein & GhaffarianHoseini, Ali, 2014. "State-of-the-art analysis of the environmental benefits of green roofs," Applied Energy, Elsevier, vol. 115(C), pages 411-428.
    9. Tsang, S.W. & Jim, C.Y., 2011. "Theoretical evaluation of thermal and energy performance of tropical green roofs," Energy, Elsevier, vol. 36(5), pages 3590-3598.
    10. Chua, K.J. & Chou, S.K., 2010. "Energy performance of residential buildings in Singapore," Energy, Elsevier, vol. 35(2), pages 667-678.
    11. Refahi, Amir Hossein & Talkhabi, Hossein, 2015. "Investigating the effective factors on the reduction of energy consumption in residential buildings with green roofs," Renewable Energy, Elsevier, vol. 80(C), pages 595-603.
    12. Ouldboukhitine, Salah-Eddine & Belarbi, Rafik & Sailor, David J., 2014. "Experimental and numerical investigation of urban street canyons to evaluate the impact of green roof inside and outside buildings," Applied Energy, Elsevier, vol. 114(C), pages 273-282.
    13. Lilliana L. H. Peng & C. Y. Jim, 2015. "Seasonal and Diurnal Thermal Performance of a Subtropical Extensive Green Roof: The Impacts of Background Weather Parameters," Sustainability, MDPI, vol. 7(8), pages 1-16, August.
    14. Raji, Babak & Tenpierik, Martin J. & van den Dobbelsteen, Andy, 2015. "The impact of greening systems on building energy performance: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 610-623.
    15. Goudarzi, Hossein & Mostafaeipour, Ali, 2017. "Energy saving evaluation of passive systems for residential buildings in hot and dry regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 432-446.
    16. Lilliana L.H. Peng & C. Y. Jim, 2013. "Green-Roof Effects on Neighborhood Microclimate and Human Thermal Sensation," Energies, MDPI, vol. 6(2), pages 1-21, January.
    17. Jaffal, Issa & Ouldboukhitine, Salah-Eddine & Belarbi, Rafik, 2012. "A comprehensive study of the impact of green roofs on building energy performance," Renewable Energy, Elsevier, vol. 43(C), pages 157-164.
    18. Bevilacqua, Piero, 2021. "The effectiveness of green roofs in reducing building energy consumptions across different climates. A summary of literature results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    19. Jim, C.Y., 2015. "Diurnal and partitioned heat-flux patterns of coupled green-building roof systems," Renewable Energy, Elsevier, vol. 81(C), pages 262-274.
    20. Jim, C.Y., 2014. "Passive warming of indoor space induced by tropical green roof in winter," Energy, Elsevier, vol. 68(C), pages 272-282.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:107:y:2013:i:c:p:10-24. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.