IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v96y2012icp122-132.html
   My bibliography  Save this item

Modeling and simulation of consumer response to dynamic pricing with enabled technologies

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Li, Lanlan & Gong, Chengzhu & Wang, Deyun & Zhu, Kejun, 2013. "Multi-agent simulation of the time-of-use pricing policy in an urban natural gas pipeline network: A case study of Zhengzhou," Energy, Elsevier, vol. 52(C), pages 37-43.
  2. Feuerriegel, Stefan & Neumann, Dirk, 2014. "Measuring the financial impact of demand response for electricity retailers," Energy Policy, Elsevier, vol. 65(C), pages 359-368.
  3. Doostizadeh, Meysam & Ghasemi, Hassan, 2012. "A day-ahead electricity pricing model based on smart metering and demand-side management," Energy, Elsevier, vol. 46(1), pages 221-230.
  4. Boßmann, Tobias & Eser, Eike Johannes, 2016. "Model-based assessment of demand-response measures—A comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1637-1656.
  5. Hungerford, Zoe & Bruce, Anna & MacGill, Iain, 2019. "The value of flexible load in power systems with high renewable energy penetration," Energy, Elsevier, vol. 188(C).
  6. Alahäivälä, Antti & Heß, Tobias & Cao, Sunliang & Lehtonen, Matti, 2015. "Analyzing the optimal coordination of a residential micro-CHP system with a power sink," Applied Energy, Elsevier, vol. 149(C), pages 326-337.
  7. Blanca Moreno & María T García-à lvarez, 2017. "Analyzing the impact of fossil fuel import reliance on electricity prices: The case of the Iberian Electricity Market," Energy & Environment, , vol. 28(7), pages 687-705, November.
  8. Vardakas, John S. & Zorba, Nizar & Verikoukis, Christos V., 2015. "Performance evaluation of power demand scheduling scenarios in a smart grid environment," Applied Energy, Elsevier, vol. 142(C), pages 164-178.
  9. Upton, J. & Murphy, M. & Shalloo, L. & Groot Koerkamp, P.W.G. & De Boer, I.J.M., 2015. "Assessing the impact of changes in the electricity price structure on dairy farm energy costs," Applied Energy, Elsevier, vol. 137(C), pages 1-8.
  10. Behboodi, Sahand & Chassin, David P. & Crawford, Curran & Djilali, Ned, 2016. "Renewable resources portfolio optimization in the presence of demand response," Applied Energy, Elsevier, vol. 162(C), pages 139-148.
  11. Mohammad Rozali, Nor Erniza & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul & Klemeš, Jiří Jaromír, 2015. "Peak-off-peak load shifting for hybrid power systems based on Power Pinch Analysis," Energy, Elsevier, vol. 90(P1), pages 128-136.
  12. Rajeev, T. & Ashok, S., 2015. "Dynamic load-shifting program based on a cloud computing framework to support the integration of renewable energy sources," Applied Energy, Elsevier, vol. 146(C), pages 141-149.
  13. He, Senyu & Yin, Jianhua & Zhang, Bin & Wang, Zhaohua, 2018. "How to upgrade an enterprise’s low-carbon technologies under a carbon tax: The trade-off between tax and upgrade fee," Applied Energy, Elsevier, vol. 227(C), pages 564-573.
  14. Huang, Shiyang & Hu, Guiping, 2018. "Biomass supply contract pricing and environmental policy analysis: A simulation approach," Energy, Elsevier, vol. 145(C), pages 557-566.
  15. Gu, Chenghong & Yan, Xiaohe & Yan, Zhang & Li, Furong, 2017. "Dynamic pricing for responsive demand to increase distribution network efficiency," Applied Energy, Elsevier, vol. 205(C), pages 236-243.
  16. Gong, Chengzhu & Tang, Kai & Zhu, Kejun & Hailu, Atakelty, 2016. "An optimal time-of-use pricing for urban gas: A study with a multi-agent evolutionary game-theoretic perspective," Applied Energy, Elsevier, vol. 163(C), pages 283-294.
  17. Harris, A.R. & Rogers, Michelle Marinich & Miller, Carol J. & McElmurry, Shawn P. & Wang, Caisheng, 2015. "Residential emissions reductions through variable timing of electricity consumption," Applied Energy, Elsevier, vol. 158(C), pages 484-489.
  18. Osaru Agbonaye & Patrick Keatley & Ye Huang & Motasem Bani Mustafa & Neil Hewitt, 2020. "Design, Valuation and Comparison of Demand Response Strategies for Congestion Management," Energies, MDPI, vol. 13(22), pages 1-29, November.
  19. Wang, Ge & Zhang, Qi & Li, Hailong & McLellan, Benjamin C. & Chen, Siyuan & Li, Yan & Tian, Yulu, 2017. "Study on the promotion impact of demand response on distributed PV penetration by using non-cooperative game theoretical analysis," Applied Energy, Elsevier, vol. 185(P2), pages 1869-1878.
  20. Woo, C.K. & Sreedharan, P. & Hargreaves, J. & Kahrl, F. & Wang, J. & Horowitz, I., 2014. "A review of electricity product differentiation," Applied Energy, Elsevier, vol. 114(C), pages 262-272.
  21. Woo, C.K. & Li, R. & Shiu, A. & Horowitz, I., 2013. "Residential winter kWh responsiveness under optional time-varying pricing in British Columbia," Applied Energy, Elsevier, vol. 108(C), pages 288-297.
  22. Feuerriegel, Stefan & Neumann, Dirk, 2016. "Integration scenarios of Demand Response into electricity markets: Load shifting, financial savings and policy implications," Energy Policy, Elsevier, vol. 96(C), pages 231-240.
  23. Moreno, Blanca & García-Álvarez, María Teresa & Ramos, Carmen & Fernández-Vázquez, Esteban, 2014. "A General Maximum Entropy Econometric approach to model industrial electricity prices in Spain: A challenge for the competitiveness," Applied Energy, Elsevier, vol. 135(C), pages 815-824.
  24. Vardakas, John S. & Zorba, Nizar & Verikoukis, Christos V., 2016. "Power demand control scenarios for smart grid applications with finite number of appliances," Applied Energy, Elsevier, vol. 162(C), pages 83-98.
  25. Hugo Algarvio & Fernando Lopes, 2023. "Bilateral Contracting and Price-Based Demand Response in Multi-Agent Electricity Markets: A Study on Time-of-Use Tariffs," Energies, MDPI, vol. 16(2), pages 1-17, January.
  26. Liu, Xiuli & Moreno, Blanca & García, Ana Salomé, 2016. "A grey neural network and input-output combined forecasting model. Primary energy consumption forecasts in Spanish economic sectors," Energy, Elsevier, vol. 115(P1), pages 1042-1054.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.