IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v92y2012icp800-808.html
   My bibliography  Save this article

Comparative field performance study of concentrator augmented array with two system configurations

Author

Listed:
  • Nkwetta, Dan Nchelatebe
  • Smyth, Mervyn

Abstract

The paper describes the system and experimental evaluation of an evacuated tube heat pipe collector array augmented with a novel design internal concentrator having a direct flow absorber and tested in the north–south and east–west align configurations under real outdoor conditions. External and internal concentrators have the potential to supply higher generator inlet temperatures needed for solar driven cooling systems. However, internal concentrator augmented solar collectors can further reduce heat losses and increase output temperatures. It is shown that collector outlet temperatures of 110°C or more is possible and can be efficiently used to drive solar cooling systems with higher coefficient of performance (COP). The evacuated tube collector array augmented with a novely designed internal concentrator having a direct flow absorber in the north–south alignment was found to be more energy efficient with larger temperature lift and outlet and inlet temperature differential and substantial improvement in thermal performance compared to its east–west align configuration due to shorter connection piping connecting the internal concentrator augmented CPC to the evacuated tube heat pipe collector array.

Suggested Citation

  • Nkwetta, Dan Nchelatebe & Smyth, Mervyn, 2012. "Comparative field performance study of concentrator augmented array with two system configurations," Applied Energy, Elsevier, vol. 92(C), pages 800-808.
  • Handle: RePEc:eee:appene:v:92:y:2012:i:c:p:800-808
    DOI: 10.1016/j.apenergy.2011.08.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191100540X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2011.08.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tanaka, Hiroshi, 2011. "Solar thermal collector augmented by flat plate booster reflector: Optimum inclination of collector and reflector," Applied Energy, Elsevier, vol. 88(4), pages 1395-1404, April.
    2. Chow, T. T. & Chan, A. L. S., 2004. "Numerical study of desirable solar-collector orientations for the coastal region of South China," Applied Energy, Elsevier, vol. 79(3), pages 249-260, November.
    3. Cruz, José M. S. & Hammond, Geoffrey P. & Reis, Albino J. P. S., 2002. "Thermal performance of a trapezoidal-shaped solar collector/energy store," Applied Energy, Elsevier, vol. 73(2), pages 195-212, October.
    4. Ayompe, L.M. & Duffy, A. & Mc Keever, M. & Conlon, M. & McCormack, S.J., 2011. "Comparative field performance study of flat plate and heat pipe evacuated tube collectors (ETCs) for domestic water heating systems in a temperate climate," Energy, Elsevier, vol. 36(5), pages 3370-3378.
    5. Andris Piebalgs, 2006. "Green paper: A European strategy for sustainable, competitive and secure energy," CESifo Forum, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 7(02), pages 8-20, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nkwetta, Dan Nchelatebe & Sandercock, Jim, 2016. "A state-of-the-art review of solar air-conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1351-1366.
    2. Nkwetta, Dan Nchelatebe & Smyth, Mervyn, 2012. "Performance analysis and comparison of concentrated evacuated tube heat pipe solar collectors," Applied Energy, Elsevier, vol. 98(C), pages 22-32.
    3. Kim, Yong Sin & Balkoski, Kevin & Jiang, Lun & Winston, Roland, 2013. "Efficient stationary solar thermal collector systems operating at a medium-temperature range," Applied Energy, Elsevier, vol. 111(C), pages 1071-1079.
    4. Javed Akhter & Syed I. Gilani & Hussain H. Al-Kayiem & Muzaffar Ali, 2019. "Optical Performance Analysis of Single Flow Through and Concentric Tube Receiver Coupled with a Modified CPC Collector Under Different Configurations," Energies, MDPI, vol. 12(21), pages 1-24, October.
    5. Riaz, Hamza & Ali, Muzaffar & Akhter, Javed & Sheikh, Nadeem Ahmed & Rashid, Muhammad & Usman, Muhammad, 2023. "Numerical and experimental investigations of an involute shaped solar compound parabolic collector with variable concentration ratio," Renewable Energy, Elsevier, vol. 216(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Tian Pau, 2009. "The gain of single-axis tracked panel according to extraterrestrial radiation," Applied Energy, Elsevier, vol. 86(7-8), pages 1074-1079, July.
    2. repec:ntu:ntugeo:vol2-iss1-14-005 is not listed on IDEAS
    3. Ma, Tao & Li, Meng & Kazemian, Arash, 2020. "Photovoltaic thermal module and solar thermal collector connected in series to produce electricity and high-grade heat simultaneously," Applied Energy, Elsevier, vol. 261(C).
    4. Peter Lund, 2012. "The European Union challenge: integration of energy, climate, and economic policy," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 1(1), pages 60-68, July.
    5. Chan, Lok Shun, 2022. "Neighbouring shading effect on photovoltaic panel system: Its implication to green building certification scheme," Renewable Energy, Elsevier, vol. 188(C), pages 476-490.
    6. Finon, Dominique & Locatelli, Catherine, 2008. "Russian and European gas interdependence: Could contractual trade channel geopolitics?," Energy Policy, Elsevier, vol. 36(1), pages 423-442, January.
    7. Dawid Szutowski & Piotr Ratajczak, 2016. "The Relation between CSR and Innovation. Model Approach," Journal of Entrepreneurship, Management and Innovation, Fundacja Upowszechniająca Wiedzę i Naukę "Cognitione", vol. 12(2), pages 1-1.
    8. Dieckhoener, Caroline, 2010. "Simulating security of supply effects of the Nabucco and South Stream projects for the European natural gas market," EWI Working Papers 2010-7, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI), revised 21 Jan 2012.
    9. Weiwei Liu & Yuan Tao & Zhile Yang & Kexin Bi, 2019. "Exploring and Visualizing the Patent Collaboration Network: A Case Study of Smart Grid Field in China," Sustainability, MDPI, vol. 11(2), pages 1-18, January.
    10. Shafieian, Abdellah & Khiadani, Mehdi & Nosrati, Ataollah, 2018. "A review of latest developments, progress, and applications of heat pipe solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 273-304.
    11. deLlano-Paz, Fernando & Calvo-Silvosa, Anxo & Iglesias Antelo, Susana & Soares, Isabel, 2015. "The European low-carbon mix for 2030: The role of renewable energy sources in an environmentally and socially efficient approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 49-61.
    12. Jean-Arnold Vinois, 2007. "The Way towards an Energy Policy for Europe," Vierteljahrshefte zur Wirtschaftsforschung / Quarterly Journal of Economic Research, DIW Berlin, German Institute for Economic Research, vol. 76(1), pages 17-25.
    13. Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Yu, Jinghua & Xu, Xinhua & Su, Xiaosong, 2020. "Towards net zero energy building: The application potential and adaptability of photovoltaic-thermoelectric-battery wall system," Applied Energy, Elsevier, vol. 258(C).
    14. Gao, Datong & Zhong, Shuai & Ren, Xiao & Kwan, Trevor Hocksun & Pei, Gang, 2022. "The energetic, exergetic, and mechanical comparison of two structurally optimized non-concentrating solar collectors for intermediate temperature applications," Renewable Energy, Elsevier, vol. 184(C), pages 881-898.
    15. Aleksandras Chlebnikovas & Dainius Paliulis & Artūras Kilikevičius & Jaroslaw Selech & Jonas Matijošius & Kristina Kilikevičienė & Darius Vainorius, 2021. "Possibilities and Generated Emissions of Using Wood and Lignin Biofuel for Heat Production," Energies, MDPI, vol. 14(24), pages 1-18, December.
    16. Agrawal, Monika & Chhajed, Priyank & Chowdhury, Amartya, 2022. "Performance analysis of photovoltaic module with reflector: Optimizing orientation with different tilt scenarios," Renewable Energy, Elsevier, vol. 186(C), pages 10-25.
    17. Sáenz de Miera, Gonzalo & del Ri­o González, Pablo & Vizcaino, Ignacio, 2008. "Analysing the impact of renewable electricity support schemes on power prices: The case of wind electricity in Spain," Energy Policy, Elsevier, vol. 36(9), pages 3345-3359, September.
    18. Claudia Kettner & Daniela Kletzan-Slamanig & Angela Köppl, 2015. "Climate policy integration: evidence on coherence in EU policies," Chapters, in: Larry Kreiser & Mikael S. Andersen & Birgitte E. Olsen & Stefan Speck & Janet E. Milne & Hope Ashiab (ed.), Environmental Pricing, chapter 1, pages 3-17, Edward Elgar Publishing.
    19. William J. Nuttell, 2010. "Nuclear Energy in the Enlarged European Union," Chapters, in: François Lévêque & Jean-Michel Glachant & Julián Barquín & Christian von Hirschhausen & Franziska Ho (ed.), Security of Energy Supply in Europe, chapter 8, Edward Elgar Publishing.
    20. Sharma, Harish Kumar & Kumar, Satish & Verma, Sujit Kumar, 2022. "Comparative performance analysis of flat plate solar collector having circular &trapezoidal corrugated absorber plate designs," Energy, Elsevier, vol. 253(C).
    21. repec:dau:papers:123456789/210 is not listed on IDEAS
    22. Domanico, Fabio, 2007. "Concentration in the European electricity industry: The internal market as solution?," Energy Policy, Elsevier, vol. 35(10), pages 5064-5076, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:92:y:2012:i:c:p:800-808. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.