IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v91y2012i1p475-482.html
   My bibliography  Save this article

Feasibility study of the potential use of chemistry based emission predictions for real-time control of modern diesel engines

Author

Listed:
  • Aithal, S.M.
  • Upadhyay, D.

Abstract

The feasibility of using chemical kinetics-based prediction of emission species for real-time control of modern diesel engines is investigated. A previously developed fast, physics-based model is used as a representative example. The temporal variation of temperature required for the computation of the reaction rate constants is obtained from the solution of the energy equation. The effects of composition and temperature on the thermo-physical properties of the working fluid are included in the computations. Issues relating to model complexity, computation time, and fidelity are discussed in the context of both equilibrium and finite rate chemistry for use in the real time environment. The set of model inputs and tunable parameters is assessed for real-time use against the standard sensor set available on modern diesel engines. Results show that use of physics-based quasi-dimensional models is promising but may need complex variable mappings for real-time application.

Suggested Citation

  • Aithal, S.M. & Upadhyay, D., 2012. "Feasibility study of the potential use of chemistry based emission predictions for real-time control of modern diesel engines," Applied Energy, Elsevier, vol. 91(1), pages 475-482.
  • Handle: RePEc:eee:appene:v:91:y:2012:i:1:p:475-482
    DOI: 10.1016/j.apenergy.2011.10.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261911006544
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2011.10.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aithal, S.M., 2010. "Modeling of NOx formation in diesel engines using finite-rate chemical kinetics," Applied Energy, Elsevier, vol. 87(7), pages 2256-2265, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Asprion, Jonas & Chinellato, Oscar & Guzzella, Lino, 2013. "A fast and accurate physics-based model for the NOx emissions of Diesel engines," Applied Energy, Elsevier, vol. 103(C), pages 221-233.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asprion, Jonas & Chinellato, Oscar & Guzzella, Lino, 2013. "A fast and accurate physics-based model for the NOx emissions of Diesel engines," Applied Energy, Elsevier, vol. 103(C), pages 221-233.
    2. Szwaja, Stanislaw & Jamrozik, Arkadiusz & Tutak, Wojciech, 2013. "A two-stage combustion system for burning lean gasoline mixtures in a stationary spark ignited engine," Applied Energy, Elsevier, vol. 105(C), pages 271-281.
    3. Molina, S. & Guardiola, C. & Martín, J. & García-Sarmiento, D., 2014. "Development of a control-oriented model to optimise fuel consumption and NOX emissions in a DI Diesel engine," Applied Energy, Elsevier, vol. 119(C), pages 405-416.
    4. Amba Prasad Rao, G. & Kaleemuddin, Syed, 2011. "Development of variable timing fuel injection cam for effective abatement of diesel engine emissions," Applied Energy, Elsevier, vol. 88(8), pages 2653-2662, August.
    5. Raptotasios, Spiridon I. & Sakellaridis, Nikolaos F. & Papagiannakis, Roussos G. & Hountalas, Dimitrios T., 2015. "Application of a multi-zone combustion model to investigate the NOx reduction potential of two-stroke marine diesel engines using EGR," Applied Energy, Elsevier, vol. 157(C), pages 814-823.
    6. Tauzia, Xavier & Maiboom, Alain, 2013. "Experimental study of an automotive Diesel engine efficiency when running under stoichiometric conditions," Applied Energy, Elsevier, vol. 105(C), pages 116-124.
    7. Rahman, S.M. Ashrafur & Masjuki, H.H. & Kalam, M.A. & Sanjid, A. & Abedin, M.J., 2014. "Assessment of emission and performance of compression ignition engine with varying injection timing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 221-230.
    8. Fischer, M. & Jiang, X., 2015. "Numerical optimisation for model evaluation in combustion kinetics," Applied Energy, Elsevier, vol. 156(C), pages 793-803.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:91:y:2012:i:1:p:475-482. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.