IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v88y2011i6p2113-2121.html
   My bibliography  Save this article

Performance of shape-stabilized phase change material wallboard with periodical outside heat flux waves

Author

Listed:
  • Zhou, Guobing
  • Yang, Yongping
  • Xu, Hong

Abstract

Numerical simulations were carried out to investigate the performance of shape-stabilized phase change material (SSPCM) wallboard with sinusoidal heat flux waves on the outer surface and compared with traditional building materials - brick, foam concrete and expanded polystyrene (EPS). One-dimensional enthalpy equation was solved using control volume-based implicit finite-difference scheme. Time lag ([phi]), decrement factor (f) and phase transition keeping time ([psi]) of inner surface were applied to analyze the effects of PCM thermo-physical properties, inner surface convective heat transfer coefficient and thickness of SSPCM wallboard. The results showed that for SSPCM, there exist two flat segments within one wave length period of inner surface heat flux lines and it has larger time lag and lower decrement factor than those three ordinary building materials. It was found that melting temperature and thermal conductivity of SSPCM have little effects on [phi], f and [psi], which is different from the case of temperature waves; for a certain outside heat flux wave, there exist critical values of latent heat of fusion and thickness of SSPCM above which the heat flux wave amplitude can be diminished to zero; inner surface convective heat transfer coefficient is one important factor which significantly influences the decrement factor; and the phase transition zone leads to small fluctuations of the original flat segments of inner surface heat flux line.

Suggested Citation

  • Zhou, Guobing & Yang, Yongping & Xu, Hong, 2011. "Performance of shape-stabilized phase change material wallboard with periodical outside heat flux waves," Applied Energy, Elsevier, vol. 88(6), pages 2113-2121, June.
  • Handle: RePEc:eee:appene:v:88:y:2011:i:6:p:2113-2121
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(11)00019-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tyagi, Vineet Veer & Buddhi, D., 2007. "PCM thermal storage in buildings: A state of art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(6), pages 1146-1166, August.
    2. Kuznik, Frédéric & Virgone, Joseph, 2009. "Experimental assessment of a phase change material for wall building use," Applied Energy, Elsevier, vol. 86(10), pages 2038-2046, October.
    3. Xiao, Wei & Wang, Xin & Zhang, Yinping, 2009. "Analytical optimization of interior PCM for energy storage in a lightweight passive solar room," Applied Energy, Elsevier, vol. 86(10), pages 2013-2018, October.
    4. Zhou, Guobing & Yang, Yongping & Wang, Xin & Cheng, Jinming, 2010. "Thermal characteristics of shape-stabilized phase change material wallboard with periodical outside temperature waves," Applied Energy, Elsevier, vol. 87(8), pages 2666-2672, August.
    5. Pasupathy, A. & Velraj, R. & Seeniraj, R.V., 2008. "Phase change material-based building architecture for thermal management in residential and commercial establishments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 39-64, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Silva, Tiago & Vicente, Romeu & Rodrigues, Fernanda, 2016. "Literature review on the use of phase change materials in glazing and shading solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 515-535.
    2. Giro-Paloma, Jessica & Oncins, Gerard & Barreneche, Camila & Martínez, Mònica & Fernández, A. Inés & Cabeza, Luisa F., 2013. "Physico-chemical and mechanical properties of microencapsulated phase change material," Applied Energy, Elsevier, vol. 109(C), pages 441-448.
    3. Soares, N. & Santos, P. & Gervásio, H. & Costa, J.J. & Simões da Silva, L., 2017. "Energy efficiency and thermal performance of lightweight steel-framed (LSF) construction: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 194-209.
    4. Li, C. & Wang, R.Z., 2012. "Building integrated energy storage opportunities in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6191-6211.
    5. Ge, Haoshan & Li, Haiyan & Mei, Shengfu & Liu, Jing, 2013. "Low melting point liquid metal as a new class of phase change material: An emerging frontier in energy area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 331-346.
    6. Mavrigiannaki, A. & Ampatzi, E., 2016. "Latent heat storage in building elements: A systematic review on properties and contextual performance factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 852-866.
    7. Sadineni, Suresh B. & Atallah, Fady & Boehm, Robert F., 2012. "Impact of roof integrated PV orientation on the residential electricity peak demand," Applied Energy, Elsevier, vol. 92(C), pages 204-210.
    8. Barzin, Reza & Chen, John J.J. & Young, Brent R. & Farid, Mohammed M., 2015. "Application of PCM underfloor heating in combination with PCM wallboards for space heating using price based control system," Applied Energy, Elsevier, vol. 148(C), pages 39-48.
    9. Yang, Shiyu & Oliver Gao, H. & You, Fengqi, 2022. "Model predictive control in phase-change-material-wallboard-enhanced building energy management considering electricity price dynamics," Applied Energy, Elsevier, vol. 326(C).
    10. Miranda Fuentes, Johann & Johannes, Kévyn & Kuznik, Frédéric & Cosnier, Matthieu & Virgone, Joseph, 2013. "Melting with convection and radiation in a participating phase change material," Applied Energy, Elsevier, vol. 109(C), pages 454-461.
    11. Mazzeo, Domenico & Oliveti, Giuseppe & de Gracia, Alvaro & Coma, Julià & Solé, Aran & Cabeza, Luisa F., 2017. "Experimental validation of the exact analytical solution to the steady periodic heat transfer problem in a PCM layer," Energy, Elsevier, vol. 140(P1), pages 1131-1147.
    12. Zhou, D. & Shire, G.S.F. & Tian, Y., 2014. "Parametric analysis of influencing factors in Phase Change Material Wallboard (PCMW)," Applied Energy, Elsevier, vol. 119(C), pages 33-42.
    13. Ling, Haoshu & Wang, Liang & Chen, Chao & Chen, Haisheng, 2019. "Numerical investigations of optimal phase change material incorporated into ventilated walls," Energy, Elsevier, vol. 172(C), pages 1187-1197.
    14. Zsembinszki, Gabriel & Solé, Cristian & Castell, Albert & Pérez, Gabriel & Cabeza, Luisa F., 2013. "The use of phase change materials in fish farms: A general analysis," Applied Energy, Elsevier, vol. 109(C), pages 488-496.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soares, N. & Santos, P. & Gervásio, H. & Costa, J.J. & Simões da Silva, L., 2017. "Energy efficiency and thermal performance of lightweight steel-framed (LSF) construction: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 194-209.
    2. Mavrigiannaki, A. & Ampatzi, E., 2016. "Latent heat storage in building elements: A systematic review on properties and contextual performance factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 852-866.
    3. Zhou, D. & Zhao, C.Y. & Tian, Y., 2012. "Review on thermal energy storage with phase change materials (PCMs) in building applications," Applied Energy, Elsevier, vol. 92(C), pages 593-605.
    4. Borreguero, Ana M. & Luz Sánchez, M. & Valverde, José Luis & Carmona, Manuel & Rodríguez, Juan F., 2011. "Thermal testing and numerical simulation of gypsum wallboards incorporated with different PCMs content," Applied Energy, Elsevier, vol. 88(3), pages 930-937, March.
    5. Wijesuriya, Sajith & Brandt, Matthew & Tabares-Velasco, Paulo Cesar, 2018. "Parametric analysis of a residential building with phase change material (PCM)-enhanced drywall, precooling, and variable electric rates in a hot and dry climate," Applied Energy, Elsevier, vol. 222(C), pages 497-514.
    6. Zhou, D. & Shire, G.S.F. & Tian, Y., 2014. "Parametric analysis of influencing factors in Phase Change Material Wallboard (PCMW)," Applied Energy, Elsevier, vol. 119(C), pages 33-42.
    7. Cao, Lei & Su, Di & Tang, Yaojie & Fang, Guiyin & Tang, Fang, 2015. "Properties evaluation and applications of thermal energystorage materials in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 500-522.
    8. Jin, Xing & Medina, Mario A. & Zhang, Xiaosong, 2013. "On the importance of the location of PCMs in building walls for enhanced thermal performance," Applied Energy, Elsevier, vol. 106(C), pages 72-78.
    9. Memon, Shazim Ali, 2014. "Phase change materials integrated in building walls: A state of the art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 870-906.
    10. Rao, Zhonghao & Wang, Shuangfeng & Zhang, Zhengguo, 2012. "Energy saving latent heat storage and environmental friendly humidity-controlled materials for indoor climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3136-3145.
    11. Zhai, X.Q. & Wang, X.L. & Wang, T. & Wang, R.Z., 2013. "A review on phase change cold storage in air-conditioning system: Materials and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 108-120.
    12. Huang, Xiang & Alva, Guruprasad & Jia, Yuting & Fang, Guiyin, 2017. "Morphological characterization and applications of phase change materials in thermal energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 128-145.
    13. Zeinelabdein, Rami & Omer, Siddig & Gan, Guohui, 2018. "Critical review of latent heat storage systems for free cooling in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2843-2868.
    14. Kenisarin, Murat & Mahkamov, Khamid, 2016. "Passive thermal control in residential buildings using phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 371-398.
    15. Kuznik, Frédéric & David, Damien & Johannes, Kevyn & Roux, Jean-Jacques, 2011. "A review on phase change materials integrated in building walls," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 379-391, January.
    16. Parameshwaran, R. & Kalaiselvam, S. & Harikrishnan, S. & Elayaperumal, A., 2012. "Sustainable thermal energy storage technologies for buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2394-2433.
    17. Long, Linshuang & Ye, Hong & Gao, Yanfeng & Zou, Ruqiang, 2014. "Performance demonstration and evaluation of the synergetic application of vanadium dioxide glazing and phase change material in passive buildings," Applied Energy, Elsevier, vol. 136(C), pages 89-97.
    18. Borderon, Julien & Virgone, Joseph & Cantin, Richard, 2015. "Modeling and simulation of a phase change material system for improving summer comfort in domestic residence," Applied Energy, Elsevier, vol. 140(C), pages 288-296.
    19. Waqas, Adeel & Ud Din, Zia, 2013. "Phase change material (PCM) storage for free cooling of buildings—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 607-625.
    20. Álvarez, Servando & Cabeza, Luisa F. & Ruiz-Pardo, Alvaro & Castell, Albert & Tenorio, José Antonio, 2013. "Building integration of PCM for natural cooling of buildings," Applied Energy, Elsevier, vol. 109(C), pages 514-522.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:6:p:2113-2121. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.