IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v85y2008i9p867-877.html
   My bibliography  Save this article

Profitability of sparse district heating

Author

Listed:
  • Reidhav, Charlotte
  • Werner, Sven

Abstract

The expansion of district heating into areas of low heat densities (heat sparse areas) constitutes a challenge due to the higher distribution costs. The profitability of sparse district heating has been analysed from actual investments in 74 areas with 3227 one-family houses connected to district heating between 2000 and 2004 in Göteborg, Sweden. The profitability was estimated from a probable price model, a typical marginal heat generation cost, and the investments from the actual connections made. The analysis identified factors as the linear heat density and heat sold per house explaining the main variations in profitability. The profitability analysis was concluded with a competition analysis. The main conclusion is that sparse district heating is possible when reaching low investment costs for the local distribution network and low marginal costs for the heat generation. In Sweden, the general competitiveness of sparse district heating is facilitated by the high consumption taxes for fuel oil, natural gas, and electricity. Hence, it should be more difficult to introduce sparse district heating in other countries with low energy taxes.

Suggested Citation

  • Reidhav, Charlotte & Werner, Sven, 2008. "Profitability of sparse district heating," Applied Energy, Elsevier, vol. 85(9), pages 867-877, September.
  • Handle: RePEc:eee:appene:v:85:y:2008:i:9:p:867-877
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(08)00029-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gustavsson, L & Karlsson, Å, 2003. "Heating detached houses in urban areas," Energy, Elsevier, vol. 28(8), pages 851-875.
    2. Joelsson, Anna & Gustavsson, Leif, 2008. "Perspectives on implementing energy efficiency in existing Swedish detached houses," Energy Policy, Elsevier, vol. 36(1), pages 84-96, January.
    3. Holmgren, Kristina, 2006. "Role of a district-heating network as a user of waste-heat supply from various sources - the case of Göteborg," Applied Energy, Elsevier, vol. 83(12), pages 1351-1367, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joelsson, Jonas & Gustavsson, Leif, 2012. "Swedish biomass strategies to reduce CO2 emission and oil use in an EU context," Energy, Elsevier, vol. 43(1), pages 448-468.
    2. Guelpa, Elisa & Verda, Vittorio, 2019. "Compact physical model for simulation of thermal networks," Energy, Elsevier, vol. 175(C), pages 998-1008.
    3. Amiri, Shahnaz & Trygg, Louise & Moshfegh, Bahram, 2009. "Assessment of the natural gas potential for heat and power generation in the County of Östergötland in Sweden," Energy Policy, Elsevier, vol. 37(2), pages 496-506, February.
    4. Simon Moser & Stefan Puschnigg, 2021. "Supra-Regional District Heating Networks: A Missing Infrastructure for a Sustainable Energy System," Energies, MDPI, vol. 14(12), pages 1-15, June.
    5. Truong, Nguyen Le & Gustavsson, Leif, 2013. "Integrated biomass-based production of district heat, electricity, motor fuels and pellets of different scales," Applied Energy, Elsevier, vol. 104(C), pages 623-632.
    6. Colmenar-Santos, Antonio & Rosales-Asensio, Enrique & Borge-Diez, David & Collado-Fernández, Eduardo, 2016. "Evaluation of the cost of using power plant reject heat in low-temperature district heating and cooling networks," Applied Energy, Elsevier, vol. 162(C), pages 892-907.
    7. Sun, Jian & Fu, Lin & Sun, Fangtian & Zhang, Shigang, 2014. "Study on a heat recovery system for the thermal power plant utilizing air cooling island," Energy, Elsevier, vol. 74(C), pages 836-844.
    8. Leif Gustavsson & Åsa Karlsson, 2006. "CO 2 Mitigation: On Methods and Parameters for Comparison of Fossil-Fuel and Biofuel Systems," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(5), pages 935-959, September.
    9. Joelsson, Anna & Gustavsson, Leif, 2009. "District heating and energy efficiency in detached houses of differing size and construction," Applied Energy, Elsevier, vol. 86(2), pages 126-134, February.
    10. Ballarini, Ilaria & Corgnati, Stefano Paolo & Corrado, Vincenzo, 2014. "Use of reference buildings to assess the energy saving potentials of the residential building stock: The experience of TABULA project," Energy Policy, Elsevier, vol. 68(C), pages 273-284.
    11. Shakeel, Asim & Chong, Daotong & Wang, Jinshi, 2023. "Load forecasting of district heating system based on improved FB-Prophet model," Energy, Elsevier, vol. 278(C).
    12. Olsson, Linda & Wetterlund, Elisabeth & Söderström, Mats, 2015. "Assessing the climate impact of district heating systems with combined heat and power production and industrial excess heat," Resources, Conservation & Recycling, Elsevier, vol. 96(C), pages 31-39.
    13. Rezaie, Behnaz & Reddy, Bale V. & Rosen, Marc A., 2014. "An enviro-economic function for assessing energy resources for district energy systems," Energy, Elsevier, vol. 70(C), pages 159-164.
    14. Huang, Zishuo & Yu, Hang & Peng, Zhenwei & Feng, Yifu, 2017. "Planning community energy system in the industry 4.0 era: Achievements, challenges and a potential solution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 710-721.
    15. Pereverza, Kateryna & Pasichnyi, Oleksii & Lazarevic, David & Kordas, Olga, 2017. "Strategic planning for sustainable heating in cities: A morphological method for scenario development and selection," Applied Energy, Elsevier, vol. 186(P2), pages 115-125.
    16. Morandin, Matteo & Hackl, Roman & Harvey, Simon, 2014. "Economic feasibility of district heating delivery from industrial excess heat: A case study of a Swedish petrochemical cluster," Energy, Elsevier, vol. 65(C), pages 209-220.
    17. Henning, Dag & Trygg, Louise, 2008. "Reduction of electricity use in Swedish industry and its impact on national power supply and European CO2 emissions," Energy Policy, Elsevier, vol. 36(7), pages 2330-2350, July.
    18. Rezaie, Behnaz & Rosen, Marc A., 2012. "District heating and cooling: Review of technology and potential enhancements," Applied Energy, Elsevier, vol. 93(C), pages 2-10.
    19. Difs, Kristina & Bennstam, Marcus & Trygg, Louise & Nordenstam, Lena, 2010. "Energy conservation measures in buildings heated by district heating – A local energy system perspective," Energy, Elsevier, vol. 35(8), pages 3194-3203.
    20. Sandvall, Akram Fakhri & Börjesson, Martin & Ekvall, Tomas & Ahlgren, Erik O., 2015. "Modelling environmental and energy system impacts of large-scale excess heat utilisation – A regional case study," Energy, Elsevier, vol. 79(C), pages 68-79.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:85:y:2008:i:9:p:867-877. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.