IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v87y2010i5p1513-1521.html
   My bibliography  Save this article

Experimental validation of the simulation module of the water-cooled variable refrigerant flow system under cooling operation

Author

Listed:
  • Li, Yue Ming
  • Wu, Jing Yi
  • Shiochi, Sumio

Abstract

On the basis of EnergyPlus's codes, the catalogue and performance parameters from some related companies, a special simulation module for variable refrigerant flow system with a water-cooled condenser (water-cooled VRF) was developed and embedded in the software of EnergyPlus, the building energy simulation program. To evaluate the energy performance of the system and the accuracy of the simulation module, the measurement of the water-cooled VRF is built in Dalian, China. After simulation and comparison, some conclusions can be drawn. The mean of the absolute value of the daily error in the 9Â days is 11.3% for cooling capacity while the one for compressor power is 15.7%. At the same time, the accuracy of the power simulation strongly depends on the accuracy of the cooling capacity simulation.

Suggested Citation

  • Li, Yue Ming & Wu, Jing Yi & Shiochi, Sumio, 2010. "Experimental validation of the simulation module of the water-cooled variable refrigerant flow system under cooling operation," Applied Energy, Elsevier, vol. 87(5), pages 1513-1521, May.
  • Handle: RePEc:eee:appene:v:87:y:2010:i:5:p:1513-1521
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(09)00410-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Loutzenhiser, Peter G. & Maxwell, Gregory M. & Manz, Heinrich, 2007. "An empirical validation of the daylighting algorithms and associated interactions in building energy simulation programs using various shading devices and windows," Energy, Elsevier, vol. 32(10), pages 1855-1870.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Colorado, D. & Hernández, J.A. & García-Valladares, O. & Huicochea, A. & Siqueiros, J., 2011. "Numerical simulation and experimental validation of a helical double-pipe vertical condenser," Applied Energy, Elsevier, vol. 88(6), pages 2136-2145, June.
    2. Yu, Xinqiao & Yan, Da & Sun, Kaiyu & Hong, Tianzhen & Zhu, Dandan, 2016. "Comparative study of the cooling energy performance of variable refrigerant flow systems and variable air volume systems in office buildings," Applied Energy, Elsevier, vol. 183(C), pages 725-736.
    3. Gilani, Hooman Azad & Hoseinzadeh, Siamak & Karimi, Hirou & Karimi, Ako & Hassanzadeh, Amir & Garcia, Davide Astiaso, 2021. "Performance analysis of integrated solar heat pump VRF system for the low energy building in Mediterranean island," Renewable Energy, Elsevier, vol. 174(C), pages 1006-1019.
    4. Ascione, Fabrizio & Bellia, Laura & Capozzoli, Alfonso, 2013. "A coupled numerical approach on museum air conditioning: Energy and fluid-dynamic analysis," Applied Energy, Elsevier, vol. 103(C), pages 416-427.
    5. Yan, Huaxia & Xia, Yudong & Deng, Shiming, 2017. "Simulation study on a three-evaporator air conditioning system for simultaneous indoor air temperature and humidity control," Applied Energy, Elsevier, vol. 207(C), pages 294-304.
    6. Li, Guannan & Hu, Yunpeng & Chen, Huanxin & Li, Haorong & Hu, Min & Guo, Yabin & Liu, Jiangyan & Sun, Shaobo & Sun, Miao, 2017. "Data partitioning and association mining for identifying VRF energy consumption patterns under various part loads and refrigerant charge conditions," Applied Energy, Elsevier, vol. 185(P1), pages 846-861.
    7. Jing Zhao & Yu Shan, 2020. "A Fuzzy Control Strategy Using the Load Forecast for Air Conditioning System," Energies, MDPI, vol. 13(3), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alrubaih, M.S. & Zain, M.F.M. & Alghoul, M.A. & Ibrahim, N.L.N. & Shameri, M.A. & Elayeb, Omkalthum, 2013. "Research and development on aspects of daylighting fundamentals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 494-505.
    2. Kirimtat, Ayca & Koyunbaba, Basak Kundakci & Chatzikonstantinou, Ioannis & Sariyildiz, Sevil, 2016. "Review of simulation modeling for shading devices in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 23-49.
    3. Ramos, Greici & Ghisi, Enedir, 2010. "Analysis of daylight calculated using the EnergyPlus programme," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1948-1958, September.
    4. Wong, S.L. & Wan, Kevin K.W. & Lam, Tony N.T., 2010. "Artificial neural networks for energy analysis of office buildings with daylighting," Applied Energy, Elsevier, vol. 87(2), pages 551-557, February.
    5. Krarti, Moncef, 2023. "Optimal optical properties for smart glazed windows applied to residential buildings," Energy, Elsevier, vol. 278(PB).
    6. Glasgo, Brock & Hendrickson, Chris & Azevedo, Inês Lima, 2017. "Assessing the value of information in residential building simulation: Comparing simulated and actual building loads at the circuit level," Applied Energy, Elsevier, vol. 203(C), pages 348-363.
    7. Zhang, Yunfei & Zhou, Zhihua & Liu, Junwei & Yuan, Jianjuan, 2022. "Data augmentation for improving heating load prediction of heating substation based on TimeGAN," Energy, Elsevier, vol. 260(C).
    8. Chen, Xi & Yang, Hongxing & Wang, Yuanhao, 2017. "Parametric study of passive design strategies for high-rise residential buildings in hot and humid climates: miscellaneous impact factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 442-460.
    9. Mavromatidis, Lazaros Elias & Marsault, Xavier & Lequay, Hervé, 2014. "Daylight factor estimation at an early design stage to reduce buildings' energy consumption due to artificial lighting: A numerical approach based on Doehlert and Box–Behnken designs," Energy, Elsevier, vol. 65(C), pages 488-502.
    10. Krarti, Moncef, 2023. "Optimal energy performance of dynamic sliding and insulated shades for residential buildings," Energy, Elsevier, vol. 263(PB).
    11. Li, Danny H.W. & Lam, Tony N.T. & Wong, S.L. & Tsang, Ernest K.W., 2008. "Lighting and cooling energy consumption in an open-plan office using solar film coating," Energy, Elsevier, vol. 33(8), pages 1288-1297.
    12. Krarti, Moncef, 2021. "Impact of PV integrated rotating overhangs for US residential buildings," Renewable Energy, Elsevier, vol. 174(C), pages 835-849.
    13. Badescu, Viorel & Laaser, Nadine & Crutescu, Ruxandra, 2010. "Warm season cooling requirements for passive buildings in Southeastern Europe (Romania)," Energy, Elsevier, vol. 35(8), pages 3284-3300.
    14. Yuan, Jianjuan & Huang, Ke & Lu, Shilei & Zhang, Ji & Han, Zhao & Zhou, Zhihua, 2022. "Analysis of influencing factors on heat consumption of large residential buildings with different occupancy rates-Tianjin case study," Energy, Elsevier, vol. 238(PC).
    15. Paula Sankelo & Kaiser Ahmed & Alo Mikola & Jarek Kurnitski, 2022. "Renovation Results of Finnish Single-Family Renovation Subsidies: Oil Boiler Replacement with Heat Pumps," Energies, MDPI, vol. 15(20), pages 1-18, October.
    16. Kočí, Jan & Kočí, Václav & Maděra, Jiří & Černý, Robert, 2019. "Effect of applied weather data sets in simulation of building energy demands: Comparison of design years with recent weather data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 22-32.
    17. Cattarin, G. & Causone, F. & Kindinis, A. & Pagliano, L., 2016. "Outdoor test cells for building envelope experimental characterisation – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 606-625.
    18. Yıldız, Yusuf & Arsan, Zeynep Durmuş, 2011. "Identification of the building parameters that influence heating and cooling energy loads for apartment buildings in hot-humid climates," Energy, Elsevier, vol. 36(7), pages 4287-4296.
    19. Glasgo, Brock & Khan, Nyla & Azevedo, Inês Lima, 2020. "Simulating a residential building stock to support regional efficiency policy," Applied Energy, Elsevier, vol. 261(C).
    20. Shi, Xing, 2011. "Design optimization of insulation usage and space conditioning load using energy simulation and genetic algorithm," Energy, Elsevier, vol. 36(3), pages 1659-1667.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:87:y:2010:i:5:p:1513-1521. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.