IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v87y2010i4p1400-1409.html
   My bibliography  Save this article

Increasing the efficiency of a portable PEM fuel cell by altering the cathode channel geometry: A numerical and experimental study

Author

Listed:
  • Henriques, T.
  • César, B.
  • Branco, P.J. Costa

Abstract

Portable fuel cells are receiving great attention today mainly because their energy density is higher than any portable battery solution. Among other types, portable polymer electrolyte membrane (PEM) fuel cells are an established technology where research on increasing their efficiency is leading product development and manufacturing. The objective of this work was to study and evaluate the redesign of a commercial portable fuel cell, improving its efficiency. A three-dimensional model of the original PEM fuel cell with parallel plus a transversal flow channel design was developed using Comsol Multiphysics, including the effects of liquid water formation and electric current production. Using this model, the effects of different channel geometries and respective cathode flow rates on the cell's performance, including the local transport characteristics, were studied. Laboratory tests with various fuel cell stacks using the new channels structure were effectuated for an evaluation of the fuel cell's performance, showing improvements in its efficiency of up to 26.4%.

Suggested Citation

  • Henriques, T. & César, B. & Branco, P.J. Costa, 2010. "Increasing the efficiency of a portable PEM fuel cell by altering the cathode channel geometry: A numerical and experimental study," Applied Energy, Elsevier, vol. 87(4), pages 1400-1409, April.
  • Handle: RePEc:eee:appene:v:87:y:2010:i:4:p:1400-1409
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(09)00377-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Siegel, C., 2008. "Review of computational heat and mass transfer modeling in polymer-electrolyte-membrane (PEM) fuel cells," Energy, Elsevier, vol. 33(9), pages 1331-1352.
    2. Perng, Shiang-Wuu & Wu, Horng-Wen & Jue, Tswen-Chyuan & Cheng, Kuo-Chih, 2009. "Numerical predictions of a PEM fuel cell performance enhancement by a rectangular cylinder installed transversely in the flow channel," Applied Energy, Elsevier, vol. 86(9), pages 1541-1554, September.
    3. Marsala, Giuseppe & Pucci, Marcello & Vitale, Gianpaolo & Cirrincione, Maurizio & Miraoui, Abdellatif, 2009. "A prototype of a fuel cell PEM emulator based on a buck converter," Applied Energy, Elsevier, vol. 86(10), pages 2192-2203, October.
    4. Baschuk, J.J. & Li, Xianguo, 2009. "A comprehensive, consistent and systematic mathematical model of PEM fuel cells," Applied Energy, Elsevier, vol. 86(2), pages 181-193, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yun & Chen, Ken S. & Mishler, Jeffrey & Cho, Sung Chan & Adroher, Xavier Cordobes, 2011. "A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research," Applied Energy, Elsevier, vol. 88(4), pages 981-1007, April.
    2. Wang, Chin-Tsan & Hu, Yuh-Chung & Zheng, Pei-Lun, 2010. "Novel biometric flow slab design for improvement of PEMFC performance," Applied Energy, Elsevier, vol. 87(4), pages 1366-1375, April.
    3. Perng, Shiang-Wuu & Wu, Horng-Wen, 2010. "Effect of the prominent catalyst layer surface on reactant gas transport and cell performance at the cathodic side of a PEMFC," Applied Energy, Elsevier, vol. 87(4), pages 1386-1399, April.
    4. Wu, Horng-Wen & Ku, Hui-Wen, 2011. "The optimal parameters estimation for rectangular cylinders installed transversely in the flow channel of PEMFC from a three-dimensional PEMFC model and the Taguchi method," Applied Energy, Elsevier, vol. 88(12), pages 4879-4890.
    5. Wu, Horng-Wen, 2016. "A review of recent development: Transport and performance modeling of PEM fuel cells," Applied Energy, Elsevier, vol. 165(C), pages 81-106.
    6. Qin, Yanzhou & Li, Xianguo & Jiao, Kui & Du, Qing & Yin, Yan, 2014. "Effective removal and transport of water in a PEM fuel cell flow channel having a hydrophilic plate," Applied Energy, Elsevier, vol. 113(C), pages 116-126.
    7. Hsueh, Ching-Yi & Chu, Hsin-Sen & Yan, Wei-Mon & Chen, Chiun-Hsun, 2010. "Transport phenomena and performance of a plate methanol steam micro-reformer with serpentine flow field design," Applied Energy, Elsevier, vol. 87(10), pages 3137-3147, October.
    8. Perng, Shiang-Wuu & Wu, Horng-Wen, 2011. "Non-isothermal transport phenomenon and cell performance of a cathodic PEM fuel cell with a baffle plate in a tapered channel," Applied Energy, Elsevier, vol. 88(1), pages 52-67, January.
    9. Yan, Wei-Mon & Wang, Xiao-Dong & Lee, Duu-Jong & Zhang, Xin-Xin & Guo, Yi-Fan & Su, Ay, 2011. "Experimental study of commercial size proton exchange membrane fuel cell performance," Applied Energy, Elsevier, vol. 88(1), pages 392-396, January.
    10. Ismail, M.S. & Hughes, K.J. & Ingham, D.B. & Ma, L. & Pourkashanian, M., 2012. "Effects of anisotropic permeability and electrical conductivity of gas diffusion layers on the performance of proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 95(C), pages 50-63.
    11. Ko, Johan & Ju, Hyunchul, 2012. "Comparison of numerical simulation results and experimental data during cold-start of polymer electrolyte fuel cells," Applied Energy, Elsevier, vol. 94(C), pages 364-374.
    12. Yulin Wang & Xiangling Liao & Guokun Liu & Haokai Xu & Chao Guan & Huixuan Wang & Hua Li & Wei He & Yanzhou Qin, 2023. "Review of Flow Field Designs for Polymer Electrolyte Membrane Fuel Cells," Energies, MDPI, vol. 16(10), pages 1-54, May.
    13. Jiao, Kui & Park, Jaewan & Li, Xianguo, 2010. "Experimental investigations on liquid water removal from the gas diffusion layer by reactant flow in a PEM fuel cell," Applied Energy, Elsevier, vol. 87(9), pages 2770-2777, September.
    14. Barzegari, Mohammad M. & Dardel, Morteza & Alizadeh, Ebrahim & Ramiar, Abas, 2016. "Dynamic modeling and validation studies of dead-end cascade H2/O2 PEM fuel cell stack with integrated humidifier and separator," Applied Energy, Elsevier, vol. 177(C), pages 298-308.
    15. Salva, J. Antonio & Iranzo, Alfredo & Rosa, Felipe & Tapia, Elvira, 2016. "Validation of cell voltage and water content in a PEM (polymer electrolyte membrane) fuel cell model using neutron imaging for different operating conditions," Energy, Elsevier, vol. 101(C), pages 100-112.
    16. Abdollahzadeh, M. & Ribeirinha, P. & Boaventura, M. & Mendes, A., 2018. "Three-dimensional modeling of PEMFC with contaminated anode fuel," Energy, Elsevier, vol. 152(C), pages 939-959.
    17. Jung, Chi-Young & Yi, Jae-You & Yi, Sung-Chul, 2014. "On the role of the silica-containing catalyst layer for proton exchange membrane fuel cells," Energy, Elsevier, vol. 68(C), pages 794-800.
    18. Ismail, M.S. & Ingham, D.B. & Ma, L. & Hughes, K.J. & Pourkashanian, M., 2017. "Effects of catalyst agglomerate shape in polymer electrolyte fuel cells investigated by a multi-scale modelling framework," Energy, Elsevier, vol. 122(C), pages 420-430.
    19. Tzelepis, Stefanos & Kavadias, Kosmas A. & Marnellos, George E. & Xydis, George, 2021. "A review study on proton exchange membrane fuel cell electrochemical performance focusing on anode and cathode catalyst layer modelling at macroscopic level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    20. Xu, Liangfei & Fang, Chuan & Hu, Junming & Cheng, Siliang & Li, Jianqiu & Ouyang, Minggao & Lehnert, Werner, 2017. "Parameter extraction of polymer electrolyte membrane fuel cell based on quasi-dynamic model and periphery signals," Energy, Elsevier, vol. 122(C), pages 675-690.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:87:y:2010:i:4:p:1400-1409. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.