IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v86y2009i9p1423-1430.html
   My bibliography  Save this article

A new version of a solar water heating system coupled with a solar water pump

Author

Listed:
  • Sutthivirode, Kittiwoot
  • Namprakai, Pichai
  • Roonprasang, Natthaphon

Abstract

This research target was to improve the thermal efficiency of a solar water heating system (SWHS) coupled with a built-in solar water pump. The designed system consists of 1.58-m2 flat plate solar collectors, an overhead tank placed at the top level, the larger water storage tank without a heat exchanger at the lower level, and a one-way valve for water circulation control. The discharge heads of 1 and 2 m were tested. The pump could operate at the collector temperature of about 70-90 °C and vapor gage pressure of 10-18 kPa. It was found that water circulation within the SWHS ranged between 15 and 65 l/d depending upon solar intensity and discharge head. Moreover, the max water temperature in the storage tank is around 59 °C. The max daily pump efficiency is about 0.0017%. The SWHS could have max daily thermal efficiency of about 21%. It is concluded that the thermal efficiency was successfully improved, except for the pump one. The new SWHS with 1 m discharge head or lower is suitable for residential use. It adds less weight to a building roof and saves electrical energy for a circulation pump. It has lower cost compared to a domestic SWHS.

Suggested Citation

  • Sutthivirode, Kittiwoot & Namprakai, Pichai & Roonprasang, Natthaphon, 2009. "A new version of a solar water heating system coupled with a solar water pump," Applied Energy, Elsevier, vol. 86(9), pages 1423-1430, September.
  • Handle: RePEc:eee:appene:v:86:y:2009:i:9:p:1423-1430
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(08)00319-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khalifa, Abdul-Jabbar N., 1998. "Forced versus natural circulation solar water heaters: A comparative performance study," Renewable Energy, Elsevier, vol. 14(1), pages 77-82.
    2. Roonprasang, Natthaphon & Namprakai, Pichai & Pratinthong, Naris, 2008. "Experimental studies of a new solar water heater system using a solar water pump," Energy, Elsevier, vol. 33(4), pages 639-646.
    3. Wong, Y. W. & Sumathy, K., 1999. "Solar thermal water pumping systems: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 3(2-3), pages 185-217, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Zhen & Garimella, Suresh V., 2010. "Molten-salt thermal energy storage in thermoclines under different environmental boundary conditions," Applied Energy, Elsevier, vol. 87(11), pages 3322-3329, November.
    2. Tao, Y.B. & He, Y.L., 2011. "Numerical study on thermal energy storage performance of phase change material under non-steady-state inlet boundary," Applied Energy, Elsevier, vol. 88(11), pages 4172-4179.
    3. Yadav, Kamlesh & Kumar, Atul & Sastry, O.S. & Wandhare, Rupesh, 2019. "Solar photovoltaics pumps operating head selection for the optimum efficiency," Renewable Energy, Elsevier, vol. 134(C), pages 169-177.
    4. Michopoulos, [alpha]. & [Kappa]yriakis, [Nu]., 2009. "Predicting the fluid temperature at the exit of the vertical ground heat exchangers," Applied Energy, Elsevier, vol. 86(10), pages 2065-2070, October.
    5. Sallem, Souhir & Chaabene, Maher & Kamoun, M.B.A., 2009. "Energy management algorithm for an optimum control of a photovoltaic water pumping system," Applied Energy, Elsevier, vol. 86(12), pages 2671-2680, December.
    6. Ji, Jie & Wang, Yanqiu & Yuan, Weiqi & Sun, Wei & He, Wei & Guo, Chao, 2014. "Experimental comparison of two PV direct-coupled solar water heating systems with the traditional system," Applied Energy, Elsevier, vol. 136(C), pages 110-118.
    7. Bandaru, Rohinikumar & C., Muraleedharan & M.V., Pavan Kumar, 2019. "Modelling and dynamic simulation of solar-thermal energy conversion in an unconventional solar thermal water pump," Renewable Energy, Elsevier, vol. 134(C), pages 292-305.
    8. Subiantoro, Alison & Ooi, Kim Tiow, 2013. "Analytical models for the computation and optimization of single and double glazing flat plate solar collectors with normal and small air gap spacing," Applied Energy, Elsevier, vol. 104(C), pages 392-399.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bandaru, Rohinikumar & C., Muraleedharan & M.V., Pavan Kumar, 2019. "Modelling and dynamic simulation of solar-thermal energy conversion in an unconventional solar thermal water pump," Renewable Energy, Elsevier, vol. 134(C), pages 292-305.
    2. Aliyu, Mansur & Hassan, Ghassan & Said, Syed A. & Siddiqui, Muhammad U. & Alawami, Ali T. & Elamin, Ibrahim M., 2018. "A review of solar-powered water pumping systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 61-76.
    3. Khargotra, Rohit & Kumar, Raj & András, Kovács & Fekete, Gusztáv & Singh, Tej, 2022. "Thermo-hydraulic characterization and design optimization of delta-shaped obstacles in solar water heating system using CRITIC-COPRAS approach," Energy, Elsevier, vol. 261(PB).
    4. Mohammed Wazed, Saeed & Hughes, Ben Richard & O’Connor, Dominic & Kaiser Calautit, John, 2018. "A review of sustainable solar irrigation systems for Sub-Saharan Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1206-1225.
    5. Jiang, X.S. & Jing, Z.X. & Li, Y.Z. & Wu, Q.H. & Tang, W.H., 2014. "Modelling and operation optimization of an integrated energy based direct district water-heating system," Energy, Elsevier, vol. 64(C), pages 375-388.
    6. Zhang, Xingxing & Shen, Jingchun & Lu, Yan & He, Wei & Xu, Peng & Zhao, Xudong & Qiu, Zhongzhu & Zhu, Zishang & Zhou, Jinzhi & Dong, Xiaoqiang, 2015. "Active Solar Thermal Facades (ASTFs): From concept, application to research questions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 32-63.
    7. Wang, Zhangyuan & Yang, Wansheng & Qiu, Feng & Zhang, Xiangmei & Zhao, Xudong, 2015. "Solar water heating: From theory, application, marketing and research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 68-84.
    8. Rahman, Md Momtazur & Khan, Imran & Field, David Luke & Techato, Kuaanan & Alameh, Kamal, 2022. "Powering agriculture: Present status, future potential, and challenges of renewable energy applications," Renewable Energy, Elsevier, vol. 188(C), pages 731-749.
    9. Sichilalu, Sam & Mathaba, Tebello & Xia, Xiaohua, 2017. "Optimal control of a wind–PV-hybrid powered heat pump water heater," Applied Energy, Elsevier, vol. 185(P2), pages 1173-1184.
    10. Bataineh, Khaled M., 2016. "Optimization analysis of solar thermal water pump," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 603-613.
    11. Delgado-Torres, Agustín M., 2009. "Solar thermal heat engines for water pumping: An update," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 462-472, February.
    12. Moazami Goudarzi, Hosein & Yarahmadi, Mehran & Shafii, Mohammad Behshad, 2017. "Design and construction of a two-phase fluid piston engine based on the structure of fluidyne," Energy, Elsevier, vol. 127(C), pages 660-670.
    13. Lakew, Amlaku Abie & Bolland, Olav & Ladam, Yves, 2011. "Theoretical thermodynamic analysis of Rankine power cycle with thermal driven pump," Applied Energy, Elsevier, vol. 88(9), pages 3005-3011.
    14. Jaisankar, S. & Radhakrishnan, T.K. & Sheeba, K.N., 2009. "Studies on heat transfer and friction factor characteristics of thermosyphon solar water heating system with helical twisted tapes," Energy, Elsevier, vol. 34(9), pages 1054-1064.
    15. Jokar, H. & Tavakolpour-Saleh, A.R., 2015. "A novel solar-powered active low temperature differential Stirling pump," Renewable Energy, Elsevier, vol. 81(C), pages 319-337.
    16. Jing, Z.X. & Jiang, X.S. & Wu, Q.H. & Tang, W.H. & Hua, B., 2014. "Modelling and optimal operation of a small-scale integrated energy based district heating and cooling system," Energy, Elsevier, vol. 73(C), pages 399-415.
    17. Chouder, Ryma & Benabdesselam, Azzedine & Stouffs, Pascal, 2023. "Modeling results of a new high performance free liquid piston engine," Energy, Elsevier, vol. 263(PD).
    18. Gopal, C. & Mohanraj, M. & Chandramohan, P. & Chandrasekar, P., 2013. "Renewable energy source water pumping systems—A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 351-370.
    19. Roonprasang, Natthaphon & Namprakai, Pichai & Pratinthong, Naris, 2008. "Experimental studies of a new solar water heater system using a solar water pump," Energy, Elsevier, vol. 33(4), pages 639-646.
    20. Ayompe, L.M. & Duffy, A. & Mc Keever, M. & Conlon, M. & McCormack, S.J., 2011. "Comparative field performance study of flat plate and heat pipe evacuated tube collectors (ETCs) for domestic water heating systems in a temperate climate," Energy, Elsevier, vol. 36(5), pages 3370-3378.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:86:y:2009:i:9:p:1423-1430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.