IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v26y2006i5p1311-1322.html
   My bibliography  Save this article

Sensitivity Analysis to Evaluate the Impact of Uncertain Factors in a Scenario Tree Model for Classical Swine Fever Introduction

Author

Listed:
  • Clazien J. De Vos
  • Helmut W. Saatkamp
  • Mirjam Nielen
  • Ruud B. M. Huirne

Abstract

Introduction of classical swine fever virus (CSFV) is a continuing threat to the pig production sector in the European Union. A scenario tree model was developed to obtain more insight into the main risk factors determining the probability of CSFV introduction (PCSFV). As this model contains many uncertain input parameters, sensitivity analysis was used to indicate which of these parameters influence model results most. Group screening combined with the statistical techniques of design of experiments and meta‐modeling was applied to detect the most important uncertain input parameters among a total of 257 parameters. The response variable chosen was the annual PCSFV into the Netherlands. Only 128 scenario calculations were needed to specify the final meta‐model. A consecutive one‐at‐a‐time sensitivity analysis was performed with the main effects of this meta‐model to explore their impact on the ranking of risk factors contributing most to the annual PCSFV. The results indicated that model outcome is most sensitive to the uncertain input parameters concerning the expected number of classical swine fever epidemics in Germany, Belgium, and the United Kingdom and the probability that CSFV survives in an empty livestock truck traveling over a distance of 0–900 km.

Suggested Citation

  • Clazien J. De Vos & Helmut W. Saatkamp & Mirjam Nielen & Ruud B. M. Huirne, 2006. "Sensitivity Analysis to Evaluate the Impact of Uncertain Factors in a Scenario Tree Model for Classical Swine Fever Introduction," Risk Analysis, John Wiley & Sons, vol. 26(5), pages 1311-1322, October.
  • Handle: RePEc:wly:riskan:v:26:y:2006:i:5:p:1311-1322
    DOI: 10.1111/j.1539-6924.2006.00816.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1539-6924.2006.00816.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1539-6924.2006.00816.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kleijnen, Jack P. C., 1995. "Verification and validation of simulation models," European Journal of Operational Research, Elsevier, vol. 82(1), pages 145-162, April.
    2. Kleijnen, Jack P. C. & Sargent, Robert G., 2000. "A methodology for fitting and validating metamodels in simulation," European Journal of Operational Research, Elsevier, vol. 120(1), pages 14-29, January.
    3. Clazien J. De Vos & Helmut W. Saatkamp & Mirjam Nielen & Ruud B. M. Huirne, 2004. "Scenario Tree Modeling to Analyze the Probability of Classical Swine Fever Virus Introduction into Member States of the European Union," Risk Analysis, John Wiley & Sons, vol. 24(1), pages 237-253, February.
    4. van Groenendaal, W.J.H. & Kleijnen, J.P.C., 1997. "On the assessment of economic risk : Factorial design versus Monte Carlo methods," Other publications TiSEM fd2a2307-0812-4543-8151-7, Tilburg University, School of Economics and Management.
    5. Vonk Noordegraaf, Antonie & Nielen, Mirjam & Kleijnen, Jack P. C., 2003. "Sensitivity analysis by experimental design and metamodelling: Case study on simulation in national animal disease control," European Journal of Operational Research, Elsevier, vol. 146(3), pages 433-443, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kleijnen, J.P.C., 2007. "Screening Experiments for Simulation : A Review," Discussion Paper 2007-21, Tilburg University, Center for Economic Research.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. H. Christopher Frey & Sumeet R. Patil, 2002. "Identification and Review of Sensitivity Analysis Methods," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 553-578, June.
    2. Xuefei Lu & Alessandro Rudi & Emanuele Borgonovo & Lorenzo Rosasco, 2020. "Faster Kriging: Facing High-Dimensional Simulators," Operations Research, INFORMS, vol. 68(1), pages 233-249, January.
    3. Tunali, S. & Batmaz, I., 2003. "A metamodeling methodology involving both qualitative and quantitative input factors," European Journal of Operational Research, Elsevier, vol. 150(2), pages 437-450, October.
    4. Jack P. C. Kleijnen & Susan M. Sanchez & Thomas W. Lucas & Thomas M. Cioppa, 2005. "State-of-the-Art Review: A User’s Guide to the Brave New World of Designing Simulation Experiments," INFORMS Journal on Computing, INFORMS, vol. 17(3), pages 263-289, August.
    5. Kleijnen, Jack P. C. & Sargent, Robert G., 2000. "A methodology for fitting and validating metamodels in simulation," European Journal of Operational Research, Elsevier, vol. 120(1), pages 14-29, January.
    6. Strang, Kenneth David, 2012. "Importance of verifying queue model assumptions before planning with simulation software," European Journal of Operational Research, Elsevier, vol. 218(2), pages 493-504.
    7. Jin, Ding & Hedtrich, Johannes & Henning, Christian, 2018. "Applying Meta modeling for extended CGE-modeling: Sample techniques and potential application," Conference papers 332947, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    8. van der Gaag, Monique A. & Vos, Fred & Saatkamp, Helmut W. & van Boven, Michiel & van Beek, Paul & Huirne, Ruud B. M., 2004. "A state-transition simulation model for the spread of Salmonella in the pork supply chain," European Journal of Operational Research, Elsevier, vol. 156(3), pages 782-798, August.
    9. Stinstra, E., 2006. "The meta-model approach for simulation-based design optimization," Other publications TiSEM 713f828a-4716-4a19-af00-e, Tilburg University, School of Economics and Management.
    10. Ekren, Orhan & Ekren, Banu Yetkin, 2008. "Size optimization of a PV/wind hybrid energy conversion system with battery storage using response surface methodology," Applied Energy, Elsevier, vol. 85(11), pages 1086-1101, November.
    11. Batmaz, Inci & Tunali, Semra, 2003. "Small response surface designs for metamodel estimation," European Journal of Operational Research, Elsevier, vol. 145(2), pages 455-470, March.
    12. Vonk Noordegraaf, Antonie & Nielen, Mirjam & Kleijnen, Jack P. C., 2003. "Sensitivity analysis by experimental design and metamodelling: Case study on simulation in national animal disease control," European Journal of Operational Research, Elsevier, vol. 146(3), pages 433-443, May.
    13. Ekren, Orhan & Ekren, Banu Y. & Ozerdem, Baris, 2009. "Break-even analysis and size optimization of a PV/wind hybrid energy conversion system with battery storage - A case study," Applied Energy, Elsevier, vol. 86(7-8), pages 1043-1054, July.
    14. Kleijnen, J.P.C., 1997. "Experimental Design for Sensitivity Analysis, Optimization and Validation of Simulation Models," Discussion Paper 1997-52, Tilburg University, Center for Economic Research.
    15. Noguera, Jose H. & Watson, Edward F., 2006. "Response surface analysis of a multi-product batch processing facility using a simulation metamodel," International Journal of Production Economics, Elsevier, vol. 102(2), pages 333-343, August.
    16. Katarzyna Growiec & Jakub Growiec & Bogumil Kaminski, 2017. "Social Network Structure and The Trade-Off Between Social Utility and Economic Performance," KAE Working Papers 2017-026, Warsaw School of Economics, Collegium of Economic Analysis.
    17. Kleijnen, Jack P. C., 2005. "An overview of the design and analysis of simulation experiments for sensitivity analysis," European Journal of Operational Research, Elsevier, vol. 164(2), pages 287-300, July.
    18. Acharki, Naoufal & Bertoncello, Antoine & Garnier, Josselin, 2023. "Robust prediction interval estimation for Gaussian processes by cross-validation method," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    19. Juan Manuel Larrosa, 2016. "Agentes computacionales y análisis económico," Revista de Economía Institucional, Universidad Externado de Colombia - Facultad de Economía, vol. 18(34), pages 87-113, January-J.
    20. Pau Fonseca i Casas, 2023. "A Continuous Process for Validation, Verification, and Accreditation of Simulation Models," Mathematics, MDPI, vol. 11(4), pages 1-25, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:26:y:2006:i:5:p:1311-1322. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.