IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v86y2009i7-8p1043-1054.html
   My bibliography  Save this item

Break-even analysis and size optimization of a PV/wind hybrid energy conversion system with battery storage - A case study

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Schroeder, Andreas, 2011. "Modeling storage and demand management in power distribution grids," Applied Energy, Elsevier, vol. 88(12), pages 4700-4712.
  2. Selin Kocaman, Ayse & Abad, Carlos & Troy, Tara J. & Tim Huh, Woonghee & Modi, Vijay, 2016. "A stochastic model for a macroscale hybrid renewable energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 688-703.
  3. Alizadeh Zolbin, Mahboubeh & Tahouni, Nassim & Panjeshahi, M. Hassan, 2022. "Total site integration considering wind /solar energy with supply/demand variation," Energy, Elsevier, vol. 252(C).
  4. Khatib, Tamer & Mohamed, Azah & Sopian, K., 2013. "A review of photovoltaic systems size optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 454-465.
  5. Oh, Ki-Yong & Epureanu, Bogdan I., 2016. "Characterization and modeling of the thermal mechanics of lithium-ion battery cells," Applied Energy, Elsevier, vol. 178(C), pages 633-646.
  6. Zhang, Yuqing & Zhao, Xuehua & Zhang, Simeng & Zhang, Guodong & Liu, Shaomin, 2012. "Optimized preparation conditions of yttria doped zirconia coatings on potassium ferrate (VI) electrode for alkaline super-iron battery," Applied Energy, Elsevier, vol. 99(C), pages 265-271.
  7. Cherif, Habib & Belhadj, Jamel, 2011. "Large-scale time evaluation for energy estimation of stand-alone hybrid photovoltaic–wind system feeding a reverse osmosis desalination unit," Energy, Elsevier, vol. 36(10), pages 6058-6067.
  8. Mahesh, Aeidapu & Sandhu, Kanwarjit Singh, 2015. "Hybrid wind/photovoltaic energy system developments: Critical review and findings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1135-1147.
  9. Byrnes, Liam & Brown, Colin & Foster, John & Wagner, Liam D., 2013. "Australian renewable energy policy: Barriers and challenges," Renewable Energy, Elsevier, vol. 60(C), pages 711-721.
  10. Kocaman, Ayse Selin & Modi, Vijay, 2017. "Value of pumped hydro storage in a hybrid energy generation and allocation system," Applied Energy, Elsevier, vol. 205(C), pages 1202-1215.
  11. Ekren, Orhan & Ekren, Banu Y., 2010. "Size optimization of a PV/wind hybrid energy conversion system with battery storage using simulated annealing," Applied Energy, Elsevier, vol. 87(2), pages 592-598, February.
  12. Roy, Anindita & Kedare, Shireesh B. & Bandyopadhyay, Santanu, 2009. "Application of design space methodology for optimum sizing of wind-battery systems," Applied Energy, Elsevier, vol. 86(12), pages 2690-2703, December.
  13. Erdinc, O. & Uzunoglu, M., 2012. "Optimum design of hybrid renewable energy systems: Overview of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1412-1425.
  14. Rehman, Shafiqur & Mahbub Alam, Md. & Meyer, J.P. & Al-Hadhrami, Luai M., 2012. "Feasibility study of a wind–pv–diesel hybrid power system for a village," Renewable Energy, Elsevier, vol. 38(1), pages 258-268.
  15. Panayiotou, Gregoris & Kalogirou, Soteris & Tassou, Savvas, 2012. "Design and simulation of a PV and a PV–Wind standalone energy system to power a household application," Renewable Energy, Elsevier, vol. 37(1), pages 355-363.
  16. San Martín, Idoia & Berrueta, Alberto & Sanchis, Pablo & Ursúa, Alfredo, 2018. "Methodology for sizing stand-alone hybrid systems: A case study of a traffic control system," Energy, Elsevier, vol. 153(C), pages 870-881.
  17. Pourmohammadi, Pardis & Saif, Ahmed, 2023. "Robust metamodel-based simulation-optimization approaches for designing hybrid renewable energy systems," Applied Energy, Elsevier, vol. 341(C).
  18. Yan Yang & Qingyu Wei & Shanke Liu & Liang Zhao, 2022. "Distribution Strategy Optimization of Standalone Hybrid WT/PV System Based on Different Solar and Wind Resources for Rural Applications," Energies, MDPI, vol. 15(14), pages 1-21, July.
  19. Edwin, M. & Joseph Sekhar, S., 2018. "Techno- Economic evaluation of milk chilling unit retrofitted with hybrid renewable energy system in coastal province," Energy, Elsevier, vol. 151(C), pages 66-78.
  20. Perera, A.T.D. & Wickremasinghe, D.M.I.J. & Mahindarathna, D.V.S. & Attalage, R.A. & Perera, K.K.C.K. & Bartholameuz, E.M., 2012. "Sensitivity of internal combustion generator capacity in standalone hybrid energy systems," Energy, Elsevier, vol. 39(1), pages 403-411.
  21. Li, Chong & Ge, Xinfeng & Zheng, Yuan & Xu, Chang & Ren, Yan & Song, Chenguang & Yang, Chunxia, 2013. "Techno-economic feasibility study of autonomous hybrid wind/PV/battery power system for a household in Urumqi, China," Energy, Elsevier, vol. 55(C), pages 263-272.
  22. Roy, Anindita & Kedare, Shireesh B. & Bandyopadhyay, Santanu, 2010. "Optimum sizing of wind-battery systems incorporating resource uncertainty," Applied Energy, Elsevier, vol. 87(8), pages 2712-2727, August.
  23. Kalantar, M. & Mousavi G., S.M., 2010. "Dynamic behavior of a stand-alone hybrid power generation system of wind turbine, microturbine, solar array and battery storage," Applied Energy, Elsevier, vol. 87(10), pages 3051-3064, October.
  24. Dihrab, Salwan S. & Sopian, K., 2010. "Electricity generation of hybrid PV/wind systems in Iraq," Renewable Energy, Elsevier, vol. 35(6), pages 1303-1307.
  25. Nataf, Kalen & Bradley, Thomas H., 2016. "An economic comparison of battery energy storage to conventional energy efficiency technologies in Colorado manufacturing facilities," Applied Energy, Elsevier, vol. 164(C), pages 133-139.
  26. Acuña, Luceny Guzmán & Padilla, Ricardo Vasquez & Mercado, Alcides Santander, 2017. "Measuring reliability of hybrid photovoltaic-wind energy systems: A new indicator," Renewable Energy, Elsevier, vol. 106(C), pages 68-77.
  27. Bekele, Getachew & Palm, Björn, 2010. "Feasibility study for a standalone solar-wind-based hybrid energy system for application in Ethiopia," Applied Energy, Elsevier, vol. 87(2), pages 487-495, February.
  28. Mulder, Grietus & Six, Daan & Claessens, Bert & Broes, Thijs & Omar, Noshin & Mierlo, Joeri Van, 2013. "The dimensioning of PV-battery systems depending on the incentive and selling price conditions," Applied Energy, Elsevier, vol. 111(C), pages 1126-1135.
  29. Hasan Masrur & Harun Or Rashid Howlader & Mohammed Elsayed Lotfy & Kaisar R. Khan & Josep M. Guerrero & Tomonobu Senjyu, 2020. "Analysis of Techno-Economic-Environmental Suitability of an Isolated Microgrid System Located in a Remote Island of Bangladesh," Sustainability, MDPI, vol. 12(7), pages 1-27, April.
  30. Sharma, Naveen & Varun, & Siddhartha,, 2012. "Stochastic techniques used for optimization in solar systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1399-1411.
  31. Chen, Hung-Cheng, 2013. "Optimum capacity determination of stand-alone hybrid generation system considering cost and reliability," Applied Energy, Elsevier, vol. 103(C), pages 155-164.
  32. Dufo-López, Rodolfo & Lujano-Rojas, Juan M. & Bernal-Agustín, José L., 2014. "Comparison of different lead–acid battery lifetime prediction models for use in simulation of stand-alone photovoltaic systems," Applied Energy, Elsevier, vol. 115(C), pages 242-253.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.