IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v86y2009i12p2704-2720.html
   My bibliography  Save this article

Thermal performance of packed bed thermal energy storage units using multiple granular phase change composites

Author

Listed:
  • Rady, Mohamed

Abstract

The present article reports on the utilization of multiple granular phase change composites (GPCC) with different ranges of phase change temperatures in a packed bed thermal energy storage system. Small particle diameter of GPCC allows simple mixing of two or three ranges of GPCCs in a packed bed for enhancement of storage unit performance. Experiments have been carried out to characterize the phase changing characteristics of two GPCCs chosen for this purpose. Packed bed column experiments have been carried out to provide basic understanding of the heat transfer process in the composite bed consisting of a mixture of GPCCs at different values of mixing ratio. A mathematical model has been developed for the analysis of charging and discharging process dynamics. Once validated, the model has been used to perform a parametric study to investigate the overall bed performance at different values of mixing ratio and Reynolds number. An optimization of the value of mixing ratio has been obtained based on the overall charging and discharging times as well as the exergy efficiency. It has been demonstrated that, as compared to the use of single GPCC, careful choice of the mixing ratio of GPCCs in a composite bed can result in a significant enhancement of the overall storage unit performance. As compared to the use of multiple sequential layers of GPCCs, using units composed of a mixture of GPCCs with an optimized mixing ratio results in a remarkable improvement of the unit performance without limitations on the charging and discharging directions during practical applications.

Suggested Citation

  • Rady, Mohamed, 2009. "Thermal performance of packed bed thermal energy storage units using multiple granular phase change composites," Applied Energy, Elsevier, vol. 86(12), pages 2704-2720, December.
  • Handle: RePEc:eee:appene:v:86:y:2009:i:12:p:2704-2720
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(09)00165-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rady, M.A. & Huzayyin, A.S. & Arquis, E. & Monneyron, P. & Lebot, C. & Palomo, E., 2009. "Study of heat and mass transfer in a dehumidifying desiccant bed with macro-encapsulated phase change materials," Renewable Energy, Elsevier, vol. 34(3), pages 718-726.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elfeky, K.E. & Li, Xinyi & Ahmed, N. & Lu, Lin & Wang, Qiuwang, 2019. "Optimization of thermal performance in thermocline tank thermal energy storage system with the multilayered PCM(s) for CSP tower plants," Applied Energy, Elsevier, vol. 243(C), pages 175-190.
    2. Borreguero, Ana M. & Luz Sánchez, M. & Valverde, José Luis & Carmona, Manuel & Rodríguez, Juan F., 2011. "Thermal testing and numerical simulation of gypsum wallboards incorporated with different PCMs content," Applied Energy, Elsevier, vol. 88(3), pages 930-937, March.
    3. Joulin, Annabelle & Younsi, Zohir & Zalewski, Laurent & Lassue, Stéphane & Rousse, Daniel R. & Cavrot, Jean-Paul, 2011. "Experimental and numerical investigation of a phase change material: Thermal-energy storage and release," Applied Energy, Elsevier, vol. 88(7), pages 2454-2462, July.
    4. Wang, Wei & He, Xibo & Shuai, Yong & Qiu, Jun & Hou, Yicheng & Pan, Qinghui, 2022. "Experimental study on thermal performance of a novel medium-high temperature packed-bed latent heat storage system containing binary nitrate," Applied Energy, Elsevier, vol. 309(C).
    5. Ferrari, Mario L. & Pascenti, Matteo & Sorce, Alessandro & Traverso, Alberto & Massardo, Aristide F., 2014. "Real-time tool for management of smart polygeneration grids including thermal energy storage," Applied Energy, Elsevier, vol. 130(C), pages 670-678.
    6. de Gracia, Alvaro & Cabeza, Luisa F., 2017. "Numerical simulation of a PCM packed bed system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1055-1063.
    7. Xu, H.J. & Zhao, C.Y., 2015. "Thermodynamic analysis and optimization of cascaded latent heat storage system for energy efficient utilization," Energy, Elsevier, vol. 90(P2), pages 1662-1673.
    8. Cai, Yibing & Ke, Huizhen & Dong, Ju & Wei, Qufu & Lin, Jiulong & Zhao, Yong & Song, Lei & Hu, Yuan & Huang, Fenglin & Gao, Weidong & Fong, Hao, 2011. "Effects of nano-SiO2 on morphology, thermal energy storage, thermal stability, and combustion properties of electrospun lauric acid/PET ultrafine composite fibers as form-stable phase change materials," Applied Energy, Elsevier, vol. 88(6), pages 2106-2112, June.
    9. Zanganeh, G. & Pedretti, A. & Haselbacher, A. & Steinfeld, A., 2015. "Design of packed bed thermal energy storage systems for high-temperature industrial process heat," Applied Energy, Elsevier, vol. 137(C), pages 812-822.
    10. Archibold, Antonio Ramos & Gonzalez-Aguilar, José & Rahman, Muhammad M. & Yogi Goswami, D. & Romero, Manuel & Stefanakos, Elias K., 2014. "The melting process of storage materials with relatively high phase change temperatures in partially filled spherical shells," Applied Energy, Elsevier, vol. 116(C), pages 243-252.
    11. Xie, Baoshan & Baudin, Nicolas & Soto, Jérôme & Fan, Yilin & Luo, Lingai, 2023. "Experimental and numerical study on the thermocline behavior of packed-bed storage tank with sensible fillers," Renewable Energy, Elsevier, vol. 209(C), pages 106-121.
    12. Sodhi, Gurpreet Singh & Muthukumar, P., 2021. "Compound charging and discharging enhancement in multi-PCM system using non-uniform fin distribution," Renewable Energy, Elsevier, vol. 171(C), pages 299-314.
    13. Wi, Seunghwan & Jeong, Su-Gwang & Chang, Seong Jin & Lee, Jongki & Kim, Sumin, 2017. "Evaluation of energy efficient hybrid hollow plaster panel using phase change material/xGnP composites," Applied Energy, Elsevier, vol. 205(C), pages 1548-1559.
    14. Pitié, F. & Zhao, C.Y. & Baeyens, J. & Degrève, J. & Zhang, H.L., 2013. "Circulating fluidized bed heat recovery/storage and its potential to use coated phase-change-material (PCM) particles," Applied Energy, Elsevier, vol. 109(C), pages 505-513.
    15. Liu, Zhenyu & Yao, Yuanpeng & Wu, Huiying, 2013. "Numerical modeling for solid–liquid phase change phenomena in porous media: Shell-and-tube type latent heat thermal energy storage," Applied Energy, Elsevier, vol. 112(C), pages 1222-1232.
    16. Elfeky, K.E. & Mohammed, A.G. & Ahmed, N. & Lu, Lin & Wang, Qiuwang, 2020. "Thermal and economic evaluation of phase change material volume fraction for thermocline tank used in concentrating solar power plants," Applied Energy, Elsevier, vol. 267(C).
    17. Lutsenko, Nickolay A. & Fetsov, Sergey S., 2020. "Effect of side walls shape on charging and discharging performance of thermal energy storages based on granular phase change materials," Renewable Energy, Elsevier, vol. 162(C), pages 466-477.
    18. SarI, Ahmet & Alkan, Cemil & Karaipekli, Ali, 2010. "Preparation, characterization and thermal properties of PMMA/n-heptadecane microcapsules as novel solid-liquid microPCM for thermal energy storage," Applied Energy, Elsevier, vol. 87(5), pages 1529-1534, May.
    19. Bhagat, Kunal & Saha, Sandip K., 2016. "Numerical analysis of latent heat thermal energy storage using encapsulated phase change material for solar thermal power plant," Renewable Energy, Elsevier, vol. 95(C), pages 323-336.
    20. Arce, Pablo & Medrano, Marc & Gil, Antoni & Oró, Eduard & Cabeza, Luisa F., 2011. "Overview of thermal energy storage (TES) potential energy savings and climate change mitigation in Spain and Europe," Applied Energy, Elsevier, vol. 88(8), pages 2764-2774, August.
    21. Wang, Lijiu & Meng, Duo, 2010. "Fatty acid eutectic/polymethyl methacrylate composite as form-stable phase change material for thermal energy storage," Applied Energy, Elsevier, vol. 87(8), pages 2660-2665, August.
    22. Wang, Peilun & Wang, Xiang & Huang, Yun & Li, Chuan & Peng, Zhijian & Ding, Yulong, 2015. "Thermal energy charging behaviour of a heat exchange device with a zigzag plate configuration containing multi-phase-change-materials (m-PCMs)," Applied Energy, Elsevier, vol. 142(C), pages 328-336.
    23. Dong, Honglin & Wang, Dandan & Niu, Xiaofeng & Zhang, Yue & He, Xu & Ke, Qing & Lu, Zhiheng, 2022. "Experimental study on the liquid desiccant dehumidification performance of microencapsulated phase change materials slurry," Energy, Elsevier, vol. 239(PC).
    24. Amin, N.A.M. & Bruno, F. & Belusko, M., 2012. "Effectiveness–NTU correlation for low temperature PCM encapsulated in spheres," Applied Energy, Elsevier, vol. 93(C), pages 549-555.
    25. Amin, N.A.M. & Belusko, M. & Bruno, F., 2014. "An effectiveness-NTU model of a packed bed PCM thermal storage system," Applied Energy, Elsevier, vol. 134(C), pages 356-362.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rao, Zhonghao & Wang, Shuangfeng & Peng, Feifei, 2012. "Self diffusion of the nano-encapsulated phase change materials: A molecular dynamics study," Applied Energy, Elsevier, vol. 100(C), pages 303-308.
    2. Shamim, Jubair A. & Hsu, Wei-Lun & Paul, Soumyadeep & Yu, Lili & Daiguji, Hirofumi, 2021. "A review of solid desiccant dehumidifiers: Current status and near-term development goals in the context of net zero energy buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    3. Rambhad, Kishor S. & Walke, Pramod V. & Tidke, D.J., 2016. "Solid desiccant dehumidification and regeneration methods—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 73-83.
    4. Jagirdar, Mrinal & Lee, Poh Seng, 2018. "Mathematical modeling and performance evaluation of a desiccant coated fin-tube heat exchanger," Applied Energy, Elsevier, vol. 212(C), pages 401-415.
    5. Yeboah, S.K. & Darkwa, J., 2016. "A critical review of thermal enhancement of packed beds for water vapour adsorption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1500-1520.
    6. Husham Abdulmalek, Shaymaa & Khalaji Assadi, Morteza & Al-Kayiem, Hussain H. & Gitan, Ali Ahmed, 2018. "A comparative analysis on the uniformity enhancement methods of solar thermal drying," Energy, Elsevier, vol. 148(C), pages 1103-1115.
    7. Fahid Riaz & Muhammad Abdul Qyyum & Awais Bokhari & Jiří Jaromír Klemeš & Muhammad Usman & Muhammad Asim & Muhammad Rizwan Awan & Muhammad Imran & Moonyong Lee, 2021. "Design and Energy Analysis of a Solar Desiccant Evaporative Cooling System with Built-In Daily Energy Storage," Energies, MDPI, vol. 14(9), pages 1-17, April.
    8. Kabeel, A.E. & Abdelgaied, Mohamed, 2018. "Solar energy assisted desiccant air conditioning system with PCM as a thermal storage medium," Renewable Energy, Elsevier, vol. 122(C), pages 632-642.
    9. Enteria, Napoleon & Mizutani, Kunio, 2011. "The role of the thermally activated desiccant cooling technologies in the issue of energy and environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 2095-2122, May.
    10. Ramzy K., A. & Kadoli, R. & Ashok Babu, T.P., 2011. "Improved utilization of desiccant material in packed bed dehumidifier using composite particles," Renewable Energy, Elsevier, vol. 36(2), pages 732-742.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:86:y:2009:i:12:p:2704-2720. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.