IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v83y2006i10p1125-1138.html
   My bibliography  Save this article

Optimising ventilation-system design for a container-housed engine

Author

Listed:
  • Sala, J.M.
  • López-González, L.M.
  • Ruiz de Adana, M.
  • Eguía, J.
  • Flores, I.
  • Míguez, J.L.

Abstract

Containerised cogeneration sets, CCSs, are an efficient answer for remote developing regions which do not have alternative energy sources and for those applications requiring mobility and the quick installation of energy plants. Nevertheless, CCSs can present over-heating problems as a result of inefficient ventilation. The heat dissipated by each of the 28 elements under consideration in the engine compartment was assessed, together with the mass flow rate of air supplied to the cab and the air temperature at the inlet and outlet. A Computational Fluid Dynamics (CFD) model has been developed that allows for simulation of the parameters of velocity, temperature and pressure and for calculating the heat flows in a CCS with a reciprocating diesel engine, with an alternator power of 903Â kW. Predictions from this model have been contrasted with the experimental data obtained in a series of measurements. The CFD model has been used to analyse possible alternatives for improving the ventilation system. Besides the use of insulation to reduce the heat dissipated, other alternatives have been studied: e.g., improving the airflow by fitting a metal sheet as a deflector, or using a third fan. Of the three alternatives analysed, the company has decided to incorporate the simplest and cheapest, consisting in fitting a metal sheet around the alternator.

Suggested Citation

  • Sala, J.M. & López-González, L.M. & Ruiz de Adana, M. & Eguía, J. & Flores, I. & Míguez, J.L., 2006. "Optimising ventilation-system design for a container-housed engine," Applied Energy, Elsevier, vol. 83(10), pages 1125-1138, October.
  • Handle: RePEc:eee:appene:v:83:y:2006:i:10:p:1125-1138
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(05)00158-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gan, Guohui & Riffat, Saffa B., 2000. "Numerical determination of energy losses at duct junctions," Applied Energy, Elsevier, vol. 67(3), pages 331-340, November.
    2. Chow, W. K., 2001. "Numerical studies of airflows induced by mechanical ventilation and air-conditioning (MVAC) systems," Applied Energy, Elsevier, vol. 68(2), pages 135-159, February.
    3. Mumma, Stanley A. & Mahank, Thomas A. & Ke, Yu-Pei, 1998. "Analytical determination of duct fitting loss-coefficients," Applied Energy, Elsevier, vol. 61(4), pages 229-247, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rakopoulos, C.D. & Kosmadakis, G.M. & Dimaratos, A.M. & Pariotis, E.G., 2011. "Investigating the effect of crevice flow on internal combustion engines using a new simple crevice model implemented in a CFD code," Applied Energy, Elsevier, vol. 88(1), pages 111-126, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sala, J.M. & González, L.M. López & Míguez, J.L. & Eguía, J.J. & Vicuña, J.E. & Juárez, M.C. & Doménech, J., 2005. "Improvement of a chain-hardening furnace by computational fluid dynamics (CFD) simulation," Applied Energy, Elsevier, vol. 81(3), pages 260-276, July.
    2. Teng-Yi Wang & Kuang-Chung Tsai, 2021. "Effects of Time to Unactuate Air Conditioning on Fire Growth," Energies, MDPI, vol. 14(11), pages 1-15, May.
    3. Shi, W.X. & Ji, J. & Sun, J.H. & Lo, S.M. & Li, L.J. & Yuan, X.Y., 2014. "Influence of staircase ventilation state on the airflow and heat transfer of the heated room on the middle floor of high rise building," Applied Energy, Elsevier, vol. 119(C), pages 173-180.
    4. Ascione, Fabrizio & Bellia, Laura & Capozzoli, Alfonso, 2013. "A coupled numerical approach on museum air conditioning: Energy and fluid-dynamic analysis," Applied Energy, Elsevier, vol. 103(C), pages 416-427.
    5. Mao, Ning & Song, Mengjie & Deng, Shiming, 2016. "Application of TOPSIS method in evaluating the effects of supply vane angle of a task/ambient air conditioning system on energy utilization and thermal comfort," Applied Energy, Elsevier, vol. 180(C), pages 536-545.
    6. Chow, W. K., 2002. "Ventilation of enclosed train compartments in Hong Kong," Applied Energy, Elsevier, vol. 71(3), pages 161-170, March.
    7. Bruno, Roberto & Bevilacqua, Piero & Cuconati, Teresa & Arcuri, Natale, 2019. "Energy evaluations of an innovative multi-storey wooden near Zero Energy Building designed for Mediterranean areas," Applied Energy, Elsevier, vol. 238(C), pages 929-941.
    8. Chow, W. K., 2004. "Wind-induced indoor-air flow in a high-rise building adjacent to a vertical wall," Applied Energy, Elsevier, vol. 77(2), pages 225-234, February.
    9. Tianxiang Liu & Shitong Li & Chao Jiang & Xiao Zhang & Zijing Tan, 2023. "Local Resistance Characteristics of T-Type Tee Based on Chamfering Treatment," Sustainability, MDPI, vol. 15(19), pages 1-17, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:83:y:2006:i:10:p:1125-1138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.