IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v378y2025ipas0306261924021585.html
   My bibliography  Save this article

Integrating EVs into distribution grids — Examining the effects of various DSO intervention strategies on optimized charging

Author

Listed:
  • Lilienkamp, Arne
  • Namockel, Nils

Abstract

Adopting electric vehicles (EVs) and implementing variable electricity tariffs increase peak demand and the risk of congestion in distribution grids. To avert critical grid situations and sidestep expensive grid expansions, Distribution System Operators (DSOs) must have intervention rights, allowing them to curtail charging processes. Various curtailment strategies are possible, varying in spatio-temporal differentiation and possible discrimination. However, evaluating different strategies is complex due to the interplay of economic factors, technical requirements, and regulatory constraints — a complexity not fully addressed in the current literature. Our study introduces a sophisticated model to optimize electric vehicle charging strategies to address this gap. This model considers different tariff schemes (Fixed, Time-of-Use, and Real-Time) and incorporates DSO interventions (basic, variable, and smart) within its optimization framework. Based on the model, we analyze the flexibility demand and total electricity costs from the users’ perspective. Applying our model to a synthetic distribution grid, we find that flexible tariffs offer consumers only marginal economic benefits and increase the risk of grid congestion due to herding behavior. All curtailment strategies effectively alleviate congestion, with variable curtailment featuring spatio-temporal differentiation, approaching optimality regarding flexibility demand. Notably, applying curtailment from the users’ perspective does not lower cost savings significantly.

Suggested Citation

  • Lilienkamp, Arne & Namockel, Nils, 2025. "Integrating EVs into distribution grids — Examining the effects of various DSO intervention strategies on optimized charging," Applied Energy, Elsevier, vol. 378(PA).
  • Handle: RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924021585
    DOI: 10.1016/j.apenergy.2024.124775
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924021585
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124775?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Siobhan Powell & Gustavo Vianna Cezar & Liang Min & Inês M. L. Azevedo & Ram Rajagopal, 2022. "Charging infrastructure access and operation to reduce the grid impacts of deep electric vehicle adoption," Nature Energy, Nature, vol. 7(10), pages 932-945, October.
    2. Spiliotis, Konstantinos & Ramos Gutierrez, Ariana Isabel & Belmans, Ronnie, 2016. "Demand flexibility versus physical network expansions in distribution grids," Applied Energy, Elsevier, vol. 182(C), pages 613-624.
    3. Heilmann, Christoph & Wozabal, David, 2021. "How much smart charging is smart?," Applied Energy, Elsevier, vol. 291(C).
    4. Frings, Cordelia & Helgeson, Broghan, 2022. "Developing a Model for Consumer Management of Decentralized Options," EWI Working Papers 2022-5, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    5. Steffen Meinecke & Džanan Sarajlić & Simon Ruben Drauz & Annika Klettke & Lars-Peter Lauven & Christian Rehtanz & Albert Moser & Martin Braun, 2020. "SimBench—A Benchmark Dataset of Electric Power Systems to Compare Innovative Solutions Based on Power Flow Analysis," Energies, MDPI, vol. 13(12), pages 1-19, June.
    6. Stute, Judith & Klobasa, Marian, 2024. "How do dynamic electricity tariffs and different grid charge designs interact? - Implications for residential consumers and grid reinforcement requirements," Energy Policy, Elsevier, vol. 189(C).
    7. Dynge, Marthe Fogstad & Crespo del Granado, Pedro & Hashemipour, Naser & Korpås, Magnus, 2021. "Impact of local electricity markets and peer-to-peer trading on low-voltage grid operations," Applied Energy, Elsevier, vol. 301(C).
    8. Arnold, Fabian & Lilienkamp, Arne & Namockel, Nils, 2023. "Diffusion of electric vehicles and their flexibility potential for smoothing residual demand - A spatio-temporal analysis for Germany," EWI Working Papers 2023-4, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI), revised 02 Feb 2024.
    9. Konstantina Valogianni & Wolfgang Ketter & John Collins & Dmitry Zhdanov, 2020. "Sustainable Electric Vehicle Charging using Adaptive Pricing," Production and Operations Management, Production and Operations Management Society, vol. 29(6), pages 1550-1572, June.
    10. Daneshzand, Farzaneh & Coker, Phil J & Potter, Ben & Smith, Stefan T, 2023. "EV smart charging: How tariff selection influences grid stress and carbon reduction," Applied Energy, Elsevier, vol. 348(C).
    11. Blaschke, Maximilian J., 2022. "Dynamic pricing of electricity: Enabling demand response in domestic households," Energy Policy, Elsevier, vol. 164(C).
    12. Michael von Bonin & Elias Dörre & Hadi Al-Khzouz & Martin Braun & Xian Zhou, 2022. "Impact of Dynamic Electricity Tariff and Home PV System Incentives on Electric Vehicle Charging Behavior: Study on Potential Grid Implications and Economic Effects for Households," Energies, MDPI, vol. 15(3), pages 1-28, February.
    13. Englberger, Stefan & Abo Gamra, Kareem & Tepe, Benedikt & Schreiber, Michael & Jossen, Andreas & Hesse, Holger, 2021. "Electric vehicle multi-use: Optimizing multiple value streams using mobile storage systems in a vehicle-to-grid context," Applied Energy, Elsevier, vol. 304(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Steinbach, Sarah A. & Blaschke, Maximilian J., 2024. "Enabling electric mobility: Can photovoltaic and home battery systems significantly reduce grid reinforcement costs?," Applied Energy, Elsevier, vol. 375(C).
    2. Powell, Siobhan & Martin, Sonia & Rajagopal, Ram & Azevedo, Inês M.L. & de Chalendar, Jacques, 2024. "Future-proof rates for controlled electric vehicle charging: Comparing multi-year impacts of different emission factor signals," Energy Policy, Elsevier, vol. 190(C).
    3. Sarah A. Steinbach & Maximilian J. Blaschke, 2024. "How grid reinforcement costs differ by the income of electric vehicle users," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Luke, Justin & Ribeiro, Mateus Gheorghe de Castro & Martin, Sonia & Balogun, Emmanuel & Cezar, Gustavo Vianna & Pavone, Marco & Rajagopal, Ram, 2025. "Optimal coordination of electric buses and battery storage for achieving a 24/7 carbon-free electrified fleet," Applied Energy, Elsevier, vol. 377(PC).
    5. Nouicer, Athir & Meeus, Leonardo & Delarue, Erik, 2023. "Demand-side flexibility in distribution grids: Voluntary versus mandatory contracting," Energy Policy, Elsevier, vol. 173(C).
    6. Parlikar, Anupam & Schott, Maximilian & Godse, Ketaki & Kucevic, Daniel & Jossen, Andreas & Hesse, Holger, 2023. "High-power electric vehicle charging: Low-carbon grid integration pathways with stationary lithium-ion battery systems and renewable generation," Applied Energy, Elsevier, vol. 333(C).
    7. Zhao, Yang & Jiang, Ziyue & Chen, Xinyu & Liu, Peng & Peng, Tianduo & Shu, Zhan, 2023. "Toward environmental sustainability: data-driven analysis of energy use patterns and load profiles for urban electric vehicle fleets," Energy, Elsevier, vol. 285(C).
    8. Arlt, Marie-Louise & Astier, Nicolas, 2023. "Do retail businesses have efficient incentives to invest in public charging stations for electric vehicles?," Energy Economics, Elsevier, vol. 124(C).
    9. Kofi Afrifa Agyeman & Gyeonggak Kim & Hoonyeon Jo & Seunghyeon Park & Sekyung Han, 2020. "An Ensemble Stochastic Forecasting Framework for Variable Distributed Demand Loads," Energies, MDPI, vol. 13(10), pages 1-20, May.
    10. Li, Zepeng & Wu, Qiuwei & Li, Hui & Nie, Chengkai & Tan, Jin, 2024. "Distributed low-carbon economic dispatch of integrated power and transportation system," Applied Energy, Elsevier, vol. 353(PA).
    11. Li, Xueqin & Zheng, Zhuoji & Luo, Beier & Shi, Daqian & Han, Xianfeng, 2024. "The impact of electricity sales side reform on energy technology innovation: An analysis based on SCP paradigm," Energy Economics, Elsevier, vol. 136(C).
    12. Pol Olivella-Rosell & Pau Lloret-Gallego & Íngrid Munné-Collado & Roberto Villafafila-Robles & Andreas Sumper & Stig Ødegaard Ottessen & Jayaprakash Rajasekharan & Bernt A. Bremdal, 2018. "Local Flexibility Market Design for Aggregators Providing Multiple Flexibility Services at Distribution Network Level," Energies, MDPI, vol. 11(4), pages 1-19, April.
    13. Thomas Pownall & Iain Soutar & Catherine Mitchell, 2021. "Re-Designing GB’s Electricity Market Design: A Conceptual Framework Which Recognises the Value of Distributed Energy Resources," Energies, MDPI, vol. 14(4), pages 1-26, February.
    14. Müller, Mathias & Blume, Yannic & Reinhard, Janis, 2022. "Impact of behind-the-meter optimised bidirectional electric vehicles on the distribution grid load," Energy, Elsevier, vol. 255(C).
    15. Marques, Vítor & Costa, Paulo Moisés & Bento, Nuno, 2022. "Greater than the sum: On regulating innovation in electricity distribution networks with externalities," Utilities Policy, Elsevier, vol. 79(C).
    16. Kaiyan Wang & Xueyan Wang & Rong Jia & Jian Dang & Yan Liang & Haodong Du, 2022. "Research on Coupled Cooperative Operation of Medium- and Long-Term and Spot Electricity Transaction for Multi-Energy System: A Case Study in China," Sustainability, MDPI, vol. 14(17), pages 1-20, August.
    17. Paul Neetzow & Roman Mendelevitch & Sauleh Siddiqui, 2018. "Modeling Coordination between Renewables and Grid: Policies to Mitigate Distribution Grid Constraints Using Residential PV-Battery Systems," Discussion Papers of DIW Berlin 1766, DIW Berlin, German Institute for Economic Research.
    18. Luna, José Diogo Forte de Oliveira & Naspolini, Amir & Reis, Guilherme Nascimento Gouvêa dos & Mendes, Paulo Renato da Costa & Normey-Rico, Julio Elias, 2024. "A novel joint energy and demand management system for smart houses based on model predictive control, hybrid storage system and quality of experience concepts," Applied Energy, Elsevier, vol. 369(C).
    19. Babagheibi, Mahsa & Jadid, Shahram & Kazemi, Ahad, 2023. "An Incentive-based robust flexibility market for congestion management of an active distribution system to use the free capacity of Microgrids," Applied Energy, Elsevier, vol. 336(C).
    20. Ricardo Silva & Everton Alves & Ricardo Ferreira & José Villar & Clara Gouveia, 2021. "Characterization of TSO and DSO Grid System Services and TSO-DSO Basic Coordination Mechanisms in the Current Decarbonization Context," Energies, MDPI, vol. 14(15), pages 1-30, July.

    More about this item

    Keywords

    Distribution grid; Electric vehicles; Flexibility; Smart charging;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • D47 - Microeconomics - - Market Structure, Pricing, and Design - - - Market Design
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924021585. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.