IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v348y2023ics0306261923008462.html
   My bibliography  Save this article

EV smart charging: How tariff selection influences grid stress and carbon reduction

Author

Listed:
  • Daneshzand, Farzaneh
  • Coker, Phil J
  • Potter, Ben
  • Smith, Stefan T

Abstract

With the rapid increase in ownership of Electric Vehicles (EVs), widespread concern has been raised regarding the potential for EV charging demand to overload electricity grids. Smart control of charging is advocated as a solution, gaining attention from business and support from policymakers. However, the ultimate grid benefits (or disbenefits) of smart charging will follow from a combination of user behaviour and pricing arrangements / tariffs. Local clustering of vehicle uptake can lead to unintended consequences as national incentives fail to align with local pressures. In this paper, we describe a simulation of the dynamic electricity demand pattern arising from a fleet of grid connected EVs. The model developed for this study combines stochastic sampling of data from a UK-based smart charging trial (Western Power Distribution’s Electric Nation project) with a set of plausible tariffs, including a strategy which specifically seeks to minimize grid carbon emissions. This provides insights into the potential impacts of EV charging by encompassing a wider range of tariffs than previously assessed, while also separating the control actions of optimising cost and managing capacity. We examine the carbon implications of tariff choice and introduce a range of grid overload metrics that reveal nuances in the tariff implications and evolution of impacts as EV penetration increases. The results show that smart charging is not necessarily a better solution for the grid compared to on-demand charging. Stepwise tariffs, currently favoured by UK energy suppliers, present a particular risk. Such tariffs can tend to increase load synchronization by shifting load towards periods where more cars are connected and awaiting charge. This can lead to an increased peak load even at moderate EV uptake levels. Dynamic tariffs proved preferable but still increase peak demand at higher vehicle uptakes. All smart tariffs offer a strong carbon benefit, but, again, current stepwise tariffs are failing to realise the full potential that could be realized by targeting low carbon time periods. Separate local capacity management was able to eliminate overload at the secondary substation, even with very high EV uptake, with only rare, very small levels of unserved demand.

Suggested Citation

  • Daneshzand, Farzaneh & Coker, Phil J & Potter, Ben & Smith, Stefan T, 2023. "EV smart charging: How tariff selection influences grid stress and carbon reduction," Applied Energy, Elsevier, vol. 348(C).
  • Handle: RePEc:eee:appene:v:348:y:2023:i:c:s0306261923008462
    DOI: 10.1016/j.apenergy.2023.121482
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923008462
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121482?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Neaimeh, Myriam & Wardle, Robin & Jenkins, Andrew M. & Yi, Jialiang & Hill, Graeme & Lyons, Padraig F. & Hübner, Yvonne & Blythe, Phil T. & Taylor, Phil C., 2015. "A probabilistic approach to combining smart meter and electric vehicle charging data to investigate distribution network impacts," Applied Energy, Elsevier, vol. 157(C), pages 688-698.
    2. Hawkes, A.D., 2014. "Long-run marginal CO2 emissions factors in national electricity systems," Applied Energy, Elsevier, vol. 125(C), pages 197-205.
    3. Matteo Muratori, 2018. "Impact of uncoordinated plug-in electric vehicle charging on residential power demand," Nature Energy, Nature, vol. 3(3), pages 193-201, March.
    4. Felipe Gonzalez & Marc Petit & Yannick Perez, 2021. "Plug-in behavior of electric vehicles users: Insights from a large-scale trial and impacts for grid integration studies," Post-Print hal-03363782, HAL.
    5. Crozier, Constance & Morstyn, Thomas & McCulloch, Malcolm, 2020. "The opportunity for smart charging to mitigate the impact of electric vehicles on transmission and distribution systems," Applied Energy, Elsevier, vol. 268(C).
    6. Powell, Siobhan & Kara, Emre Can & Sevlian, Raffi & Cezar, Gustavo Vianna & Kiliccote, Sila & Rajagopal, Ram, 2020. "Controlled workplace charging of electric vehicles: The impact of rate schedules on transformer aging," Applied Energy, Elsevier, vol. 276(C).
    7. Salah, Florian & Ilg, Jens P. & Flath, Christoph M. & Basse, Hauke & Dinther, Clemens van, 2015. "Impact of electric vehicles on distribution substations: A Swiss case study," Applied Energy, Elsevier, vol. 137(C), pages 88-96.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hussain, Shahid & Irshad, Reyazur Rashid & Pallonetto, Fabiano & Hussain, Ihtisham & Hussain, Zakir & Tahir, Muhammad & Abimannan, Satheesh & Shukla, Saurabh & Yousif, Adil & Kim, Yun-Su & El-Sayed, H, 2023. "Hybrid coordination scheme based on fuzzy inference mechanism for residential charging of electric vehicles," Applied Energy, Elsevier, vol. 352(C).
    2. Grmay Yordanos Brhane & Eunsung Oh & Sung-Yong Son, 2024. "Virtual Energy Storage System Scheduling for Commercial Buildings with Fixed and Dynamic Energy Storage," Energies, MDPI, vol. 17(13), pages 1-19, July.
    3. Helferich, Marvin & Tröger, Josephine & Stephan, Annegret & Preuß, Sabine & Pelka, Sabine & Stute, Judith & Plötz, Patrick, 2024. "Tariff option preferences for smart and bidirectional charging: Evidence from battery electric vehicle users in Germany," Energy Policy, Elsevier, vol. 192(C).
    4. Steinbach, Sarah A. & Blaschke, Maximilian J., 2024. "Enabling electric mobility: Can photovoltaic and home battery systems significantly reduce grid reinforcement costs?," Applied Energy, Elsevier, vol. 375(C).
    5. Leonardo Nogueira Fontoura da Silva & Marcelo Bruno Capeletti & Alzenira da Rosa Abaide & Luciano Lopes Pfitscher, 2024. "A Stochastic Methodology for EV Fast-Charging Load Curve Estimation Considering the Highway Traffic and User Behavior," Energies, MDPI, vol. 17(7), pages 1-27, April.
    6. Powell, Siobhan & Martin, Sonia & Rajagopal, Ram & Azevedo, Inês M.L. & de Chalendar, Jacques, 2024. "Future-proof rates for controlled electric vehicle charging: Comparing multi-year impacts of different emission factor signals," Energy Policy, Elsevier, vol. 190(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu & Liu, Junyao, 2023. "A review on integration of surging plug-in electric vehicles charging in energy-flexible buildings: Impacts analysis, collaborative management technologies, and future perspective," Applied Energy, Elsevier, vol. 331(C).
    2. Siobhan Powell & Gustavo Vianna Cezar & Liang Min & Inês M. L. Azevedo & Ram Rajagopal, 2022. "Charging infrastructure access and operation to reduce the grid impacts of deep electric vehicle adoption," Nature Energy, Nature, vol. 7(10), pages 932-945, October.
    3. Sevdari, Kristian & Calearo, Lisa & Andersen, Peter Bach & Marinelli, Mattia, 2022. "Ancillary services and electric vehicles: An overview from charging clusters and chargers technology perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Powell, Siobhan & Vianna Cezar, Gustavo & Apostolaki-Iosifidou, Elpiniki & Rajagopal, Ram, 2022. "Large-scale scenarios of electric vehicle charging with a data-driven model of control," Energy, Elsevier, vol. 248(C).
    5. Einolander, Johannes & Lahdelma, Risto, 2022. "Multivariate copula procedure for electric vehicle charging event simulation," Energy, Elsevier, vol. 238(PA).
    6. Felipe Gonzalez & Marc Petit & Yannick Perez, 2021. "Plug-in behavior of electric vehicles users: Insights from a large-scale trial and impacts for grid integration studies," Post-Print hal-03363782, HAL.
    7. Jiaan Zhang & Chenyu Liu & Leijiao Ge, 2022. "Short-Term Load Forecasting Model of Electric Vehicle Charging Load Based on MCCNN-TCN," Energies, MDPI, vol. 15(7), pages 1-25, April.
    8. Lefeng, Shi & Shengnan, Lv & Chunxiu, Liu & Yue, Zhou & Cipcigan, Liana & Acker, Thomas L., 2020. "A framework for electric vehicle power supply chain development," Utilities Policy, Elsevier, vol. 64(C).
    9. Viktor Slednev & Patrick Jochem & Wolf Fichtner, 2022. "Impacts of electric vehicles on the European high and extra high voltage power grid," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 824-837, June.
    10. Arias, Mariz B. & Bae, Sungwoo, 2016. "Electric vehicle charging demand forecasting model based on big data technologies," Applied Energy, Elsevier, vol. 183(C), pages 327-339.
    11. Buzna, Luboš & De Falco, Pasquale & Ferruzzi, Gabriella & Khormali, Shahab & Proto, Daniela & Refa, Nazir & Straka, Milan & van der Poel, Gijs, 2021. "An ensemble methodology for hierarchical probabilistic electric vehicle load forecasting at regular charging stations," Applied Energy, Elsevier, vol. 283(C).
    12. Tian, Xuelin & An, Chunjiang & Chen, Zhikun, 2023. "The role of clean energy in achieving decarbonization of electricity generation, transportation, and heating sectors by 2050: A meta-analysis review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    13. Good, Clara & Shepero, Mahmoud & Munkhammar, Joakim & Boström, Tobias, 2019. "Scenario-based modelling of the potential for solar energy charging of electric vehicles in two Scandinavian cities," Energy, Elsevier, vol. 168(C), pages 111-125.
    14. Hoarau, Quentin & Perez, Yannick, 2019. "Network tariff design with prosumers and electromobility: Who wins, who loses?," Energy Economics, Elsevier, vol. 83(C), pages 26-39.
    15. Moon, Sang-Keun & Kim, Jin-O, 2017. "Balanced charging strategies for electric vehicles on power systems," Applied Energy, Elsevier, vol. 189(C), pages 44-54.
    16. Gonzalez Venegas, Felipe & Petit, Marc & Perez, Yannick, 2021. "Active integration of electric vehicles into distribution grids: Barriers and frameworks for flexibility services," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    17. Shepero, Mahmoud & Munkhammar, Joakim, 2018. "Spatial Markov chain model for electric vehicle charging in cities using geographical information system (GIS) data," Applied Energy, Elsevier, vol. 231(C), pages 1089-1099.
    18. Xydas, Erotokritos & Marmaras, Charalampos & Cipcigan, Liana M. & Jenkins, Nick & Carroll, Steve & Barker, Myles, 2016. "A data-driven approach for characterising the charging demand of electric vehicles: A UK case study," Applied Energy, Elsevier, vol. 162(C), pages 763-771.
    19. Li, Xiaohui & Wang, Zhenpo & Zhang, Lei & Sun, Fengchun & Cui, Dingsong & Hecht, Christopher & Figgener, Jan & Sauer, Dirk Uwe, 2023. "Electric vehicle behavior modeling and applications in vehicle-grid integration: An overview," Energy, Elsevier, vol. 268(C).
    20. Steinbach, Sarah A. & Blaschke, Maximilian J., 2024. "Enabling electric mobility: Can photovoltaic and home battery systems significantly reduce grid reinforcement costs?," Applied Energy, Elsevier, vol. 375(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:348:y:2023:i:c:s0306261923008462. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.