IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v377y2025ipds0306261924019810.html
   My bibliography  Save this article

Optimized static configuration for output power maximization of thermoelectric generator arrays with hardware validation

Author

Listed:
  • Yousri, Dalia
  • Farag, Hany E.Z.
  • V., Sukanya
  • B., Bijukumar
  • El-Saadany, Ehab

Abstract

Employment of the thermoelectric generator (TEG) device as a potential green energy source encounters a major challenge due to the power losses created between its modules because of the non-uniform temperature distributions (NUTDs). For this reason, several previous works in the literature proposed approaches to dynamically reconfigure the TEG arrays to alleviate such mismatched power losses under NUTDs. Yet, dynamic configuration-based approaches require the installation of switches and sensors, which would, in turn, increase the cost and complexity of the system. To alleviate these issues, this paper proposes the design and deployment of an Optimized Static Configuration (OSC) for TEG arrays as a unique layout to replace the standardized series–parallel (SP) one. The proposed OSC is determined via the solution of a Sudoku puzzle that aims to maintain homogeneous temperature distribution across the parallel strings of the TEG array to boost the yielded produced power. The developed OSC is examined with TEG arrays of two different sizes of 6 × 6 and 9 × 9 under various NUTD conditions. The results demonstrate that the TEG array’s power output can be improved by over 6.5 % compared to the original SP configuration. Additionally, experimental validation is carried out in a 4 × 4 TEG array to confirm the feasibility of implementing OSC in practice. Finally, the OSC approach is critically evaluated in comparison to recent dynamic reconfiguration methods, taking into account factors such as the ability to mitigate temperature distribution nonuniformity, the required switches, system complexity, and overall costs. The OSC saves about 1498.5 $ of the initial cost for the switches and sensors needed for the dynamic reconfiguration approaches for a 9 × 9 TEG array.

Suggested Citation

  • Yousri, Dalia & Farag, Hany E.Z. & V., Sukanya & B., Bijukumar & El-Saadany, Ehab, 2025. "Optimized static configuration for output power maximization of thermoelectric generator arrays with hardware validation," Applied Energy, Elsevier, vol. 377(PD).
  • Handle: RePEc:eee:appene:v:377:y:2025:i:pd:s0306261924019810
    DOI: 10.1016/j.apenergy.2024.124598
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924019810
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124598?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sai Krishna, G. & Moger, Tukaram, 2019. "Improved SuDoKu reconfiguration technique for total-cross-tied PV array to enhance maximum power under partial shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 333-348.
    2. Compadre Torrecilla, Marcos & Montecucco, Andrea & Siviter, Jonathan & Knox, Andrew R. & Strain, Andrew, 2019. "Novel model and maximum power tracking algorithm for thermoelectric generators operated under constant heat flux," Applied Energy, Elsevier, vol. 256(C).
    3. Singh, Ranjeet & Yadav, Vinod Kumar & Singh, Madhusudan, 2024. "Performance enhancement of a novel reduced cross-tied PV arrangement under irradiance mismatch scenarios," Applied Energy, Elsevier, vol. 376(PA).
    4. Li, Yanzhe & Wang, Shixue & Zhao, Yulong & Yue, Like, 2022. "Effect of thermoelectric modules with different characteristics on the performance of thermoelectric generators inserted in the central flow region with porous foam copper," Applied Energy, Elsevier, vol. 327(C).
    5. Yang, Bo & Wu, Shaocong & Li, Qiang & Yan, Yingjie & Li, Danyang & Luo, Enbo & Zeng, Chunyuan & Chen, Yijun & Guo, Zhengxun & Shu, Hongchun & Li, Zilin & Wang, Jingbo, 2023. "Jellyfish search algorithm based optimal thermoelectric generation array reconfiguration under non-uniform temperature distribution condition," Renewable Energy, Elsevier, vol. 204(C), pages 197-217.
    6. Ge, Minghui & Li, Zhenhua & Zhao, Yuntong & Xuan, Zhiwei & Li, Yanzhe & Zhao, Yulong, 2022. "Experimental study of thermoelectric generator with different numbers of modules for waste heat recovery," Applied Energy, Elsevier, vol. 322(C).
    7. Yang, Bo & Zeng, Chunyuan & Li, Danyang & Guo, Zhengxun & Chen, Yijun & Shu, Hongchun & Cao, Pulin & Li, Zilin, 2022. "Improved immune genetic algorithm based TEG system reconfiguration under non-uniform temperature distribution," Applied Energy, Elsevier, vol. 325(C).
    8. Lan, Yuncheng & Lu, Junhui & Li, Junming & Wang, Suilin, 2022. "Effects of temperature-dependent thermal properties and the side leg heat dissipation on the performance of the thermoelectric generator," Energy, Elsevier, vol. 243(C).
    9. Chen, Wei-Hsin & Lin, Yen-Kuan & Luo, Ding & Jin, Liwen & Hoang, Anh Tuan & Saw, Lip Huat & Nižetić, Sandro, 2023. "Effects of material doping on the performance of thermoelectric generator with/without equal segments," Applied Energy, Elsevier, vol. 350(C).
    10. Montecucco, Andrea & Siviter, Jonathan & Knox, Andrew R., 2014. "The effect of temperature mismatch on thermoelectric generators electrically connected in series and parallel," Applied Energy, Elsevier, vol. 123(C), pages 47-54.
    11. Yousri, Dalia & Babu, Thanikanti Sudhakar & Pachauri, Rupendra Kumar & Zeineldin, Hatem & El-Saadany, Ehab F., 2024. "A novel argyle puzzle for partial shading effect mitigation with experimental validation," Renewable Energy, Elsevier, vol. 225(C).
    12. Yang, Bo & Li, Yulin & Huang, Jianxiang & Li, Miwei & Zheng, Ruyi & Duan, Jinhang & Fan, Tingsheng & Zou, He & Liu, Tao & Wang, Jingbo & Shu, Hongchun & Jiang, Lin, 2023. "Modular reconfiguration of hybrid PV-TEG systems via artificial rabbit algorithm: Modelling, design and HIL validation," Applied Energy, Elsevier, vol. 351(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Yulong & Zhang, Guoyin & Wen, Lei & Wang, Shixue & Wang, Yulin & Li, Yanzhe & Ge, Minghui, 2024. "Experimental study on thermoelectric characteristics of intermediate fluid thermoelectric generator," Applied Energy, Elsevier, vol. 365(C).
    2. Fathy, Ahmed, 2023. "Efficient energy valley optimization approach for reconfiguring thermoelectric generator system under non-uniform heat distribution," Renewable Energy, Elsevier, vol. 217(C).
    3. Luo, Ding & Zhang, Haokang & Cao, Jin & Yan, Yuyin & Cao, Bingyang, 2024. "Numerical investigation and optimization of a hexagonal thermoelectric generator with diverging fins for exhaust waste heat recovery," Energy, Elsevier, vol. 301(C).
    4. Yang, Bo & Zhang, Zijian & Zhang, Jie & Cheng, Xianlong & Li, Jiale & Shu, Jiale & Wang, Jiana & Wang, Xuetong & Li, Yulin & Wang, Jingbo, 2024. "Optimal reconfiguration design and HIL validation of hybrid PV-TEG systems via improved firefly algorithm," Energy, Elsevier, vol. 286(C).
    5. Yang, Bo & Wu, Shaocong & Li, Qiang & Yan, Yingjie & Li, Danyang & Luo, Enbo & Zeng, Chunyuan & Chen, Yijun & Guo, Zhengxun & Shu, Hongchun & Li, Zilin & Wang, Jingbo, 2023. "Jellyfish search algorithm based optimal thermoelectric generation array reconfiguration under non-uniform temperature distribution condition," Renewable Energy, Elsevier, vol. 204(C), pages 197-217.
    6. Samir Ezzitouni & Pablo Fernández-Yáñez & Luis Sánchez Rodríguez & Octavio Armas & Javier de las Morenas & Eduard Massaguer & Albert Massaguer, 2021. "Electrical Modelling and Mismatch Effects of Thermoelectric Modules on Performance of a Thermoelectric Generator for Energy Recovery in Diesel Exhaust Systems," Energies, MDPI, vol. 14(11), pages 1-15, May.
    7. Yang, Wenlong & Jin, Chenchen & Zhu, Wenchao & Xie, Changjun & Huang, Liang & Li, Yang & Xiong, Binyu, 2024. "Innovative design for thermoelectric power generation: Two-stage thermoelectric generator with variable twist ratio twisted tapes optimizing maximum output," Applied Energy, Elsevier, vol. 363(C).
    8. Yang, Wenlong & Xie, Changjun & Jin, Chenchen & Zhu, Wenchao & Li, Yang & Tang, Xinfeng, 2024. "Simulation and experimental study of thermoelectric generators with an axial gradient metal foam heat exchanger," Renewable Energy, Elsevier, vol. 232(C).
    9. Saim Memon & Khawaja Noman Tahir, 2018. "Experimental and Analytical Simulation Analyses on the Electrical Performance of Thermoelectric Generator Modules for Direct and Concentrated Quartz-Halogen Heat Harvesting," Energies, MDPI, vol. 11(12), pages 1-17, November.
    10. Flávio Morais & Pedro Carvalhaes-Dias & Luís Duarte & Anderson Spengler & Kleber de Paiva & Thiago Martins & Andreu Cabot & José Siqueira Dias, 2020. "Optimization of the TEGs Configuration (Series/Parallel) in Energy Harvesting Systems with Low-Voltage Thermoelectric Generators Connected to Ultra-Low Voltage DC–DC Converters," Energies, MDPI, vol. 13(9), pages 1-12, May.
    11. Lan, Yuncheng & Lu, Junhui & Wang, Suilin, 2023. "Study of the geometry and structure of a thermoelectric leg with variable material properties and side heat dissipation based on thermodynamic, economic, and environmental analysis," Energy, Elsevier, vol. 282(C).
    12. Sripadmanabhan Indira, Sridhar & Aravind Vaithilingam, Chockalingam & Sivasubramanian, Ramsundar & Chong, Kok-Keong & Narasingamurthi, Kulasekharan & Saidur, R., 2022. "Prototype of a novel hybrid concentrator photovoltaic/thermal and solar thermoelectric generator system for outdoor study," Renewable Energy, Elsevier, vol. 201(P1), pages 224-239.
    13. Zaher, M.H. & Abdelsalam, M.Y. & Cotton, J.S., 2020. "Study of the effects of axial conduction on the performance of thermoelectric generators integrated in a heat exchanger for waste heat recovery applications," Applied Energy, Elsevier, vol. 261(C).
    14. Ahmed Al Mansur & Md. Ruhul Amin & Molla Shahadat Hossain Lipu & Md. Imamul Islam & Ratil H. Ashique & Zubaeer Bin Shams & Mohammad Asif ul Haq & Md. Hasan Maruf & ASM Shihavuddin, 2023. "The Effects of Non-Uniformly-Aged Photovoltaic Array on Mismatch Power Loss: A Practical Investigation towards Novel Hybrid Array Configurations," Sustainability, MDPI, vol. 15(17), pages 1-17, September.
    15. Ding, L.C. & Akbarzadeh, A. & Date, Abhijit, 2016. "Electric power generation via plate type power generation unit from solar pond using thermoelectric cells," Applied Energy, Elsevier, vol. 183(C), pages 61-76.
    16. Murugesan, Palpandian & David, Prince Winston & Murugesan, Pravin & Periyasamy, Pounraj, 2023. "Battery based mismatch reduction technique for partial shaded solar PV system," Energy, Elsevier, vol. 272(C).
    17. Daniel Sanin-Villa & Oscar D. Monsalve-Cifuentes & Elkin E. Henao-Bravo, 2021. "Evaluation of Thermoelectric Generators under Mismatching Conditions," Energies, MDPI, vol. 14(23), pages 1-20, December.
    18. Kwan, Trevor Hocksun & Wu, Xiaofeng & Yao, Qinghe, 2018. "Multi-objective genetic optimization of the thermoelectric system for thermal management of proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 217(C), pages 314-327.
    19. Ricardo Marroquín-Arreola & Jinmi Lezama & Héctor Ricardo Hernández-De León & Julio César Martínez-Romo & José Antonio Hoyo-Montaño & Jorge Luis Camas-Anzueto & Elías Neftalí Escobar-Gómez & Jorge Eva, 2022. "Design of an MPPT Technique for the Indirect Measurement of the Open-Circuit Voltage Applied to Thermoelectric Generators," Energies, MDPI, vol. 15(10), pages 1-20, May.
    20. Yang, Bo & Li, Yulin & Huang, Jianxiang & Li, Miwei & Zheng, Ruyi & Duan, Jinhang & Fan, Tingsheng & Zou, He & Liu, Tao & Wang, Jingbo & Shu, Hongchun & Jiang, Lin, 2023. "Modular reconfiguration of hybrid PV-TEG systems via artificial rabbit algorithm: Modelling, design and HIL validation," Applied Energy, Elsevier, vol. 351(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pd:s0306261924019810. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.