IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v377y2025ipcs0306261924019068.html
   My bibliography  Save this article

Design and operation of future low-voltage community microgrids: An AI-based approach with real case study

Author

Listed:
  • Alam, Md Morshed
  • Hossain, M.J.
  • Zamee, Muhammad Ahsan
  • Al-Durra, Ahmed

Abstract

The utilization of artificial intelligence in the design and operation of a microgrid (MG) can contribute to improve its energy efficiency, resiliency, and cost of energy supply. This research proposes a new approach to conduct a comprehensive analysis for transforming existing low-voltage networks into MGs to achieve the net-zero goal by 2050. A data-driven machine learning-based clustering and profiling approach is designed and implemented to extract the data, constraints, and dependencies from the historical data. Furthermore, the constraints and dependencies are utilized for determining the renewable energy sources’ capacity. A Bi-level optimization technique is developed to ensure appropriate coordination of cost and renewable energy source (RES) capacity. A comprehensive analysis is carried out utilizing real historical demand and generation data of an energy community in Australia. Based on the clustered analysis, the consecutive day’s data are considered for the analysis. The findings reveal that the proposed microgrids achieve higher renewable RES utilization and lower electricity costs compared to grid-connected systems, with the potential to reduce carbon emissions by up to 98.23% when transitioning from coal-based grid systems to the proposed microgrid system. Additionally, a transformation from a grid time-of-use tariff-based system to the proposed microgrid setup can lead to a cost reduction of 65.45%. These case studies will also assist the researcher in identifying new, potential ideas and industries to accelerate the implementation of remote community microgrids.

Suggested Citation

  • Alam, Md Morshed & Hossain, M.J. & Zamee, Muhammad Ahsan & Al-Durra, Ahmed, 2025. "Design and operation of future low-voltage community microgrids: An AI-based approach with real case study," Applied Energy, Elsevier, vol. 377(PC).
  • Handle: RePEc:eee:appene:v:377:y:2025:i:pc:s0306261924019068
    DOI: 10.1016/j.apenergy.2024.124523
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924019068
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124523?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tabandeh, Abbas & Hossain, M.J. & Li, Li, 2022. "Integrated multi-stage and multi-zone distribution network expansion planning with renewable energy sources and hydrogen refuelling stations for fuel cell vehicles," Applied Energy, Elsevier, vol. 319(C).
    2. Khezri, Rahmat & Mahmoudi, Amin & Whaley, David, 2022. "Optimal sizing and comparative analysis of rooftop PV and battery for grid-connected households with all-electric and gas-electricity utility," Energy, Elsevier, vol. 251(C).
    3. Zhou, Jianguo & Xu, Zhongtian, 2023. "Optimal sizing design and integrated cost-benefit assessment of stand-alone microgrid system with different energy storage employing chameleon swarm algorithm: A rural case in Northeast China," Renewable Energy, Elsevier, vol. 202(C), pages 1110-1137.
    4. Tostado-Véliz, Marcos & Icaza-Alvarez, Daniel & Jurado, Francisco, 2021. "A novel methodology for optimal sizing photovoltaic-battery systems in smart homes considering grid outages and demand response," Renewable Energy, Elsevier, vol. 170(C), pages 884-896.
    5. Homeyra Akter & Harun Or Rashid Howlader & Akito Nakadomari & Md. Rashedul Islam & Ahmed Y. Saber & Tomonobu Senjyu, 2022. "A Short Assessment of Renewable Energy for Optimal Sizing of 100% Renewable Energy Based Microgrids in Remote Islands of Developing Countries: A Case Study in Bangladesh," Energies, MDPI, vol. 15(3), pages 1-30, February.
    6. Tayyab, Qudratullah & Qani, Nazir Ahmad & Elkholy, M.H. & Ahmed, Shoaib & Yona, Atsushi & Senjyu, Tomonobu, 2024. "Techno-economic configuration of an optimized resident microgrid: A case study for Afghanistan," Renewable Energy, Elsevier, vol. 224(C).
    7. Mewafy, Abdelrahman & Ismael, Islam & Kaddah, Sahar S. & Hu, Weihao & Chen, Zhe & Abulanwar, Sayed, 2024. "Optimal design of multiuse hybrid microgrids power by green hydrogen–ammonia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    8. Essayeh, Chaimaa & Morstyn, Thomas, 2023. "Optimal sizing for microgrids integrating distributed flexibility with the Perth West smart city as a case study," Applied Energy, Elsevier, vol. 336(C).
    9. Korjani, Saman & Casu, Fabio & Damiano, Alfonso & Pilloni, Virginia & Serpi, Alessandro, 2022. "An online energy management tool for sizing integrated PV-BESS systems for residential prosumers," Applied Energy, Elsevier, vol. 313(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicola Blasuttigh & Simone Negri & Alessandro Massi Pavan & Enrico Tironi, 2023. "Optimal Sizing and Environ-Economic Analysis of PV-BESS Systems for Jointly Acting Renewable Self-Consumers," Energies, MDPI, vol. 16(3), pages 1-25, January.
    2. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu & Liu, Junyao, 2023. "A review on integration of surging plug-in electric vehicles charging in energy-flexible buildings: Impacts analysis, collaborative management technologies, and future perspective," Applied Energy, Elsevier, vol. 331(C).
    3. Spyridon Chapaloglou & Babak Abdolmaleki & Elisabetta Tedeschi, 2023. "Optimal Generation Capacity Allocation and Droop Control Design for Current Sharing in DC Microgrids," Energies, MDPI, vol. 16(12), pages 1-17, June.
    4. Bryam Paúl Lojano-Riera & Carlos Flores-Vázquez & Juan-Carlos Cobos-Torres & David Vallejo-Ramírez & Daniel Icaza, 2023. "Electromobility with Photovoltaic Generation in an Andean City," Energies, MDPI, vol. 16(15), pages 1-16, July.
    5. Ana Rita Silva & Ana Estanqueiro, 2022. "From Wind to Hybrid: A Contribution to the Optimal Design of Utility-Scale Hybrid Power Plants," Energies, MDPI, vol. 15(7), pages 1-19, April.
    6. Tostado-Véliz, Marcos & Horrillo-Quintero, Pablo & García-Triviño, Pablo & Fernández-Ramírez, Luis M. & Jurado, Francisco, 2024. "Optimal sitting and sizing of hydrogen refilling stations in distribution networks under locational marginal prices," Applied Energy, Elsevier, vol. 374(C).
    7. Aktas, Ilter Sahin, 2024. "Techno-economic feasibility analysis and optimisation of on/off-grid wind-biogas-CHP hybrid energy system for the electrification of university campus: A case study," Renewable Energy, Elsevier, vol. 237(PC).
    8. D'Adamo, Idiano & Gastaldi, Massimo & Morone, Piergiuseppe & Ozturk, Ilhan, 2022. "Economics and policy implications of residential photovoltaic systems in Italy's developed market," Utilities Policy, Elsevier, vol. 79(C).
    9. Artis, Reza & Shivaie, Mojtaba & Weinsier, Philip D., 2024. "A flexible urban load density-dependent framework for low-carbon distribution expansion planning in the presence of hybrid hydrogen/battery/wind/solar energy systems," Applied Energy, Elsevier, vol. 364(C).
    10. Tanoto, Yusak, 2023. "Cost-reliability trade-offs for grid-connected rooftop PV in emerging economies: A case of Indonesia's urban residential households," Energy, Elsevier, vol. 285(C).
    11. Hoseinzadeh, Siamak & Astiaso Garcia, Davide & Huang, Lizhen, 2023. "Grid-connected renewable energy systems flexibility in Norway islands’ Decarbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    12. Agustín Álvarez Coomonte & Zacarías Grande Andrade & Rocio Porras Soriano & José Antonio Lozano Galant, 2024. "Review of the Planning and Distribution Methodologies to Locate Hydrogen Infrastructure in the Territory," Energies, MDPI, vol. 17(1), pages 1-25, January.
    13. Rafik Nafkha & Tomasz Ząbkowski & Krzysztof Gajowniczek, 2021. "Deep Learning-Based Approaches to Optimize the Electricity Contract Capacity Problem for Commercial Customers," Energies, MDPI, vol. 14(8), pages 1-17, April.
    14. Ferdoush, Md. Ruhul & Aziz, Ridwan Al & Karmaker, Chitra Lekha & Debnath, Binoy & Limon, Mohammad Hossain & Bari, A.B.M. Mainul, 2024. "Unraveling the challenges of waste-to-energy transition in emerging economies: Implications for sustainability," Innovation and Green Development, Elsevier, vol. 3(2).
    15. Khanal, Siraj & Khezri, Rahmat & Mahmoudi, Amin & Kahourzadeh, Solmaz & Aki, Hirohisa, 2024. "Effects of electric vehicles on energy sharing for optimal sizing of solar PV and battery energy storage," Renewable Energy, Elsevier, vol. 237(PC).
    16. Zhao, Anjun & Jiao, Yang & Quan, Wei & Chen, Yiren, 2024. "Net zero carbon rural integrated energy system design optimization based on the energy demand in temporal and spatial dimensions," Renewable Energy, Elsevier, vol. 222(C).
    17. Zheng, Shuangjin & Liu, Bo & Erfan, Mohammadian & Liu, Yan & Tian, Shansi, 2024. "Sustainable in-situ steam injection approach for shale oil extraction in Xinjiang, China: A technical and economic analysis," Energy, Elsevier, vol. 308(C).
    18. Cimmino, Luca & Barco Burgos, Jimmy & Eicker, Ursula, 2024. "Exergy and thermoeconomic analysis of a novel polygeneration system based on gasification and power-to-x strategy," Renewable Energy, Elsevier, vol. 236(C).
    19. Chen, Xi & Liu, Zhongbing & Wang, Pengcheng & Li, Benjia & Liu, Ruimiao & Zhang, Ling & Zhao, Chengliang & Luo, Songqin, 2023. "Multi-objective optimization of battery capacity of grid-connected PV-BESS system in hybrid building energy sharing community considering time-of-use tariff," Applied Energy, Elsevier, vol. 350(C).
    20. Alexander Lavrik & Yuri Zhukovskiy & Pavel Tcvetkov, 2021. "Optimizing the Size of Autonomous Hybrid Microgrids with Regard to Load Shifting," Energies, MDPI, vol. 14(16), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pc:s0306261924019068. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.