IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v377y2025ipbs0306261924018385.html
   My bibliography  Save this article

Three-dimensional flexible structures for miniature sensing and energy-harvesting devices

Author

Listed:
  • Dou, Weixin
  • Wang, Haoyu
  • Liu, Jing
  • Han, Mengdi
  • Li, Qikun
  • Yang, Rusen

Abstract

The development of miniature power generators is essential for advancing wearables and portable devices. Triboelectric nanogenerators have emerged as a promising solution, but miniaturization and broadband energy harvesting remain challenging. To address this challenge, this study developed a multi-functional device with 3D structures using a controlled mechanical buckling process. We designed and converted planar precursor layouts into the desired 3D structures for miniature nanogenerators without using additional connecting parts. Changing the topology and dimension of 3D structures expands the device's functionality and adaptability. The compact device works well for sensing and power generation with excellent cyclic stability and broadband energy conversion. The synergy of charge generation with PVDF and charge storage with PI improves the performance of the device. The 3D structure-based miniature device provides a strategic approach to advancing wearable and self-powered sensing technology.

Suggested Citation

  • Dou, Weixin & Wang, Haoyu & Liu, Jing & Han, Mengdi & Li, Qikun & Yang, Rusen, 2025. "Three-dimensional flexible structures for miniature sensing and energy-harvesting devices," Applied Energy, Elsevier, vol. 377(PB).
  • Handle: RePEc:eee:appene:v:377:y:2025:i:pb:s0306261924018385
    DOI: 10.1016/j.apenergy.2024.124455
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924018385
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124455?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Padha, Bhavya & Verma, Sonali & Prerna, & Ahmed, Aamir & Patole, Shashikant P. & Arya, Sandeep, 2024. "Plastic turned into MXene–based pyro-piezoelectric hybrid nanogenerator-driven self-powered wearable symmetric supercapacitor," Applied Energy, Elsevier, vol. 356(C).
    2. Zhou, Han & Liu, Guoxu & Bu, Tianzhao & Wang, Zheng & Cao, Jie & Wang, Zhaozheng & Zhang, Zhi & Dong, Sicheng & Zeng, Jianhua & Cao, Xiaoxin & Zhang, Chi, 2024. "Autonomous cantilever buck switch for ultra-efficient power management of triboelectric nanogenerator," Applied Energy, Elsevier, vol. 357(C).
    3. Song, Myunghwan & Hur, Jiwoong & Heo, Deokjae & Chung, Seh-Hoon & Kim, Dongchang & Kim, Sunghan & Kim, Dongseob & Lin, Zong-Hong & Chung, Jihoon & Lee, Sangmin, 2023. "Current amplification through deformable arch-shaped film based direct-current triboelectric nanogenerator for harvesting wind energy," Applied Energy, Elsevier, vol. 344(C).
    4. Lv, Yulin & Gong, Feng & Li, Hao & Zhou, Qiang & Wu, Xinlin & Wang, Wenbin & Xiao, Rui, 2020. "A flexible electrokinetic power generator derived from paper and ink for wearable electronics," Applied Energy, Elsevier, vol. 279(C).
    5. Garlisi, Corrado & Trepci, Esra & Li, Xuan & Al Sakkaf, Reem & Al-Ali, Khalid & Nogueira, Ricardo Pereira & Zheng, Lianxi & Azar, Elie & Palmisano, Giovanni, 2020. "Multilayer thin film structures for multifunctional glass: Self-cleaning, antireflective and energy-saving properties," Applied Energy, Elsevier, vol. 264(C).
    6. Yun Bai & Heling Wang & Yeguang Xue & Yuxin Pan & Jin-Tae Kim & Xinchen Ni & Tzu-Li Liu & Yiyuan Yang & Mengdi Han & Yonggang Huang & John A. Rogers & Xiaoyue Ni, 2022. "A dynamically reprogrammable surface with self-evolving shape morphing," Nature, Nature, vol. 609(7928), pages 701-708, September.
    7. Haiyang Zou & Ying Zhang & Litong Guo & Peihong Wang & Xu He & Guozhang Dai & Haiwu Zheng & Chaoyu Chen & Aurelia Chi Wang & Cheng Xu & Zhong Lin Wang, 2019. "Quantifying the triboelectric series," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    8. Yang, Wenzha & Zhao, Tiancong & Li, Zhengyu & Liu, Boying & Tang, Chenxuan & Tian, Gengqing & Yan, Jiajie & Chen, Yang & Ma, Yong & Ni, Wenchi, 2023. "Study on the performance of spherical collision triboelectric nanogenerator," Applied Energy, Elsevier, vol. 351(C).
    9. Sun, Haoyang & Li, Tao & Sha, Lyu & Chen, Fengfan & Li, Maoning & Yang, Ye & Li, Bin & Li, Dandan & Sun, Dazhi, 2023. "Comparative of diatom frustules, diatomite, and silica particles for constructing self-healing superhydrophobic materials with capacity for thermal energy storage," Applied Energy, Elsevier, vol. 332(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi Li & Yi Luo & Song Xiao & Cheng Zhang & Cheng Pan & Fuping Zeng & Zhaolun Cui & Bangdou Huang & Ju Tang & Tao Shao & Xiaoxing Zhang & Jiaqing Xiong & Zhong Lin Wang, 2024. "Visualization and standardized quantification of surface charge density for triboelectric materials," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Zehua Peng & Jihong Shi & Xiao Xiao & Ying Hong & Xuemu Li & Weiwei Zhang & Yongliang Cheng & Zuankai Wang & Wen Jung Li & Jun Chen & Michael K. H. Leung & Zhengbao Yang, 2022. "Self-charging electrostatic face masks leveraging triboelectrification for prolonged air filtration," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Jiayue Zhang & Yikui Gao & Di Liu & Jing-Shan Zhao & Jie Wang, 2023. "Discharge domains regulation and dynamic processes of direct-current triboelectric nanogenerator," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Zhang, Jiacheng & Yu, Yang & Li, Hengyu & Zhu, Mingkang & Zhang, Sheng & Gu, Chengjie & Jiang, Lin & Wang, Zhong Lin & Zhu, Jianyang & Cheng, Tinghai, 2024. "Triboelectric-electromagnetic hybrid generator with Savonius flapping wing for low-velocity water flow energy harvesting," Applied Energy, Elsevier, vol. 357(C).
    5. Yanbin Li & Antonio Lallo & Junxi Zhu & Yinding Chi & Hao Su & Jie Yin, 2024. "Adaptive hierarchical origami-based metastructures," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    6. Ziming Wang & Xuanli Dong & Xiao-Fen Li & Yawei Feng & Shunning Li & Wei Tang & Zhong Lin Wang, 2024. "A contact-electro-catalysis process for producing reactive oxygen species by ball milling of triboelectric materials," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Chaojie Chen & Shilong Zhao & Caofeng Pan & Yunlong Zi & Fangcheng Wang & Cheng Yang & Zhong Lin Wang, 2022. "A method for quantitatively separating the piezoelectric component from the as-received “Piezoelectric” signal," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Hang Zhang & Sankaran Sundaresan & Michael A. Webb, 2024. "Thermodynamic driving forces in contact electrification between polymeric materials," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. Zhaoqi Liu & Yunzhi Huang & Yuxiang Shi & Xinglin Tao & Hezhi He & Feida Chen & Zhao-Xia Huang & Zhong Lin Wang & Xiangyu Chen & Jin-Ping Qu, 2022. "Fabrication of triboelectric polymer films via repeated rheological forging for ultrahigh surface charge density," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Siqi An & Xiaowen Li & Zengrong Guo & Yi Huang & Yanlin Zhang & Hanqing Jiang, 2024. "Energy-efficient dynamic 3D metasurfaces via spatiotemporal jamming interleaved assemblies for tactile interfaces," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    11. Changjun Jia & Yongsheng Zhu & Fengxin Sun & Yuzhang Wen & Qi Wang & Ying Li & Yupeng Mao & Chongle Zhao, 2022. "Gas-Supported Triboelectric Nanogenerator Based on In Situ Gap-Generation Method for Biomechanical Energy Harvesting and Wearable Motion Monitoring," Sustainability, MDPI, vol. 14(21), pages 1-13, November.
    12. Massimo Mariello & Elisa Scarpa & Luciana Algieri & Francesco Guido & Vincenzo Mariano Mastronardi & Antonio Qualtieri & Massimo De Vittorio, 2020. "Novel Flexible Triboelectric Nanogenerator based on Metallized Porous PDMS and Parylene C," Energies, MDPI, vol. 13(7), pages 1-12, April.
    13. Li, Yang & Jiao, Shipu & Dai, Yexin & Wang, Jiao & Li, Jingyu & Kang, Ning & Irfan, Muhammad & Liu, Xianhua, 2023. "Spontaneous and sustainable multifunctional transpiration generator for simultaneous harvesting of electricity, freshwater and salt," Applied Energy, Elsevier, vol. 341(C).
    14. Ke, Yujie & Tan, Yutong & Feng, Chengchen & Chen, Cong & Lu, Qi & Xu, Qiyang & Wang, Tao & Liu, Hai & Liu, Xinghai & Peng, Jinqing & Long, Yi, 2022. "Tetra-Fish-Inspired aesthetic thermochromic windows toward Energy-Saving buildings," Applied Energy, Elsevier, vol. 315(C).
    15. Hu, Yanqiang & Wang, Xiaoli & Qin, Yechen & Li, Zhihao & Wang, Chenfei & Wu, Heng, 2022. "A robust hybrid generator for harvesting vehicle suspension vibration energy from random road excitation," Applied Energy, Elsevier, vol. 309(C).
    16. Li, Xiang & Gao, Qi & Cao, Yuying & Yang, Yanfei & Liu, Shiming & Wang, Zhong Lin & Cheng, Tinghai, 2022. "Optimization strategy of wind energy harvesting via triboelectric-electromagnetic flexible cooperation," Applied Energy, Elsevier, vol. 307(C).
    17. Zhao, Chaoyang & Yang, Yaowen & Upadrashta, Deepesh & Zhao, Liya, 2021. "Design, modeling and experimental validation of a low-frequency cantilever triboelectric energy harvester," Energy, Elsevier, vol. 214(C).
    18. Jiefeng Sun & Elisha Lerner & Brandon Tighe & Clint Middlemist & Jianguo Zhao, 2023. "Embedded shape morphing for morphologically adaptive robots," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    19. Jianxiong Zhu & Shanling Ji & Zhihao Ren & Wenyu Wu & Zhihao Zhang & Zhonghua Ni & Lei Liu & Zhisheng Zhang & Aiguo Song & Chengkuo Lee, 2023. "Triboelectric-induced ion mobility for artificial intelligence-enhanced mid-infrared gas spectroscopy," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    20. B. K. Johnson & M. Naris & V. Sundaram & A. Volchko & K. Ly & S. K. Mitchell & E. Acome & N. Kellaris & C. Keplinger & N. Correll & J. S. Humbert & M. E. Rentschler, 2023. "A multifunctional soft robotic shape display with high-speed actuation, sensing, and control," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pb:s0306261924018385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.