IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v46y2015i10p1780-1789.html
   My bibliography  Save this article

An efficient optimum Latin hypercube sampling technique based on sequencing optimisation using simulated annealing

Author

Listed:
  • Nantiwat Pholdee
  • Sujin Bureerat

Abstract

This paper proposes a new optimal Latin hypercube sampling method (OLHS) for design of a computer experiment. The new method is based on solving sequencing and continuous optimisation using simulated annealing. There are two sets of design variables used in the optimisation process: sequencing and real number variables. The special mutation operator is developed to deal with such design variables. The performance of the proposed numerical strategy is tested and compared with three established OLHS methods, namely genetic algorithm (GA), enhanced stochastic evolutionary algorithm (ESEA) and successive local enumeration (SLE). Based on 30 test problems with various design dimensions and numbers of sampling points, the proposed method gives the best results. The method can generate an optimum set of sampling points within reasonable computing time; therefore, it can be considered as a powerful tool for design of computer experiments.

Suggested Citation

  • Nantiwat Pholdee & Sujin Bureerat, 2015. "An efficient optimum Latin hypercube sampling technique based on sequencing optimisation using simulated annealing," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(10), pages 1780-1789, July.
  • Handle: RePEc:taf:tsysxx:v:46:y:2015:i:10:p:1780-1789
    DOI: 10.1080/00207721.2013.835003
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2013.835003
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2013.835003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yajing Gao & Jing Zhu & Huaxin Cheng & Fushen Xue & Qing Xie & Peng Li, 2016. "Study of Short-Term Photovoltaic Power Forecast Based on Error Calibration under Typical Climate Categories," Energies, MDPI, vol. 9(7), pages 1-15, July.
    2. Wu, Zeping & Wang, Wenjie & Wang, Donghui & Zhao, Kun & Zhang, Weihua, 2019. "Global sensitivity analysis using orthogonal augmented radial basis function," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 291-302.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:46:y:2015:i:10:p:1780-1789. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.