IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v375y2024ics0306261924014764.html
   My bibliography  Save this article

Estimation of underground hydrogen storage capacity in depleted gas reservoirs using CO2 as cushion gas

Author

Listed:
  • He, Youwei
  • Xie, Yixiang
  • Qiao, Yu
  • Qin, Jiazheng
  • Tang, Yong

Abstract

Underground hydrogen storage (UHS) is an effective means to solve large-scale hydrogen energy storage. The depleted gas reservoirs can be used as the potential UHS targets due to its huge storage space, good sealing ability, and the existing facilities. CO2 can be injected as the cushion gas to reduce the hydrogen loss, improve energy storage efficiency and achieve carbon sequestration. This work proposes a novel method to estimate the hydrogen storage capacity in depleted gas reservoirs using CO2 as cushion gas. The multi-components (H2-CO2-CH4-H2O) material balance equations are further developed by integrating the edge/bottom water and water invasion, gas (e.g., CO2, H2, CH4) dissolution in formation water as well as caprock breakthrough and fault instability. The maximum UHS operating pressure can be determined by calculating the caprock-breakthrough pressure and the fault-instability pressure. A numerical model is established to validate the proposed UHS capacity model in this work. The impact of dominated factors on the UHS capacity is discussed. The proposed method has been applied to evaluate the UHS capacity of a depleted gas reservoir in the Sichuan Basin of China. Results show that the model validation verifies the accuracy of the proposed model since the average error is only 1.76% between the analytical model developed in this work and the numerical model. The maximum pressure threshold presents the most significant impact on the UHS capacity, followed by CO2 cushion gas volume, formation temperature and water body size. The maximum pressure threshold of formation is determined to be 42 MPa. The hydrogen storage capacity under different CO2 cushion gas injection conditions is calculated. The UHS capacity is increased by 7.76% and 8.61% with dissolution when VCO2_inj is 3000 × 104 m3 and 4000 × 104 m3. The UHS capacity of Well #P4 is 6076 × 104 m3 when VCO2_inj is 4000 × 104 m3 based on the proposed model in this work. This work provides an effective approach to evaluate the hydrogen storage capacity and improve hydrogen storage efficiency by using CO2 as cushion gas considering caprock breakthrough, fault slip and gas dissolution. The established model provides important references for calculating the storage capacity of gas storage facilities in oil and gas reservoirs with edge and bottom water as well as for gas storage in aquifers.

Suggested Citation

  • He, Youwei & Xie, Yixiang & Qiao, Yu & Qin, Jiazheng & Tang, Yong, 2024. "Estimation of underground hydrogen storage capacity in depleted gas reservoirs using CO2 as cushion gas," Applied Energy, Elsevier, vol. 375(C).
  • Handle: RePEc:eee:appene:v:375:y:2024:i:c:s0306261924014764
    DOI: 10.1016/j.apenergy.2024.124093
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924014764
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124093?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Blay-Roger, Rubén & Bach, Wolfgang & Bobadilla, Luis F. & Reina, Tomas Ramirez & Odriozola, José A. & Amils, Ricardo & Blay, Vincent, 2024. "Natural hydrogen in the energy transition: Fundamentals, promise, and enigmas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    2. Lankof, Leszek & Urbańczyk, Kazimierz & Tarkowski, Radosław, 2022. "Assessment of the potential for underground hydrogen storage in salt domes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    3. Zhou, Yuekuan, 2022. "Transition towards carbon-neutral districts based on storage techniques and spatiotemporal energy sharing with electrification and hydrogenation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    4. Liu, Wei & Zhang, Zhixin & Chen, Jie & Jiang, Deyi & Wu, Fei & Fan, Jinyang & Li, Yinping, 2020. "Feasibility evaluation of large-scale underground hydrogen storage in bedded salt rocks of China: A case study in Jiangsu province," Energy, Elsevier, vol. 198(C).
    5. Tarkowski, Radosław & Lankof, Leszek & Luboń, Katarzyna & Michalski, Jan, 2024. "Hydrogen storage capacity of salt caverns and deep aquifers versus demand for hydrogen storage: A case study of Poland," Applied Energy, Elsevier, vol. 355(C).
    6. Chai, Maojie & Chen, Zhangxin & Nourozieh, Hossein & Yang, Min, 2023. "Numerical simulation of large-scale seasonal hydrogen storage in an anticline aquifer: A case study capturing hydrogen interactions and cushion gas injection," Applied Energy, Elsevier, vol. 334(C).
    7. Zhang, Sufang & Li, Xingmei, 2012. "Large scale wind power integration in China: Analysis from a policy perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1110-1115.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Zhengyang & Dai, Zhenxue & Yang, Zhijie & Zhan, Chuanjun & Chen, Wei & Cao, Mingxu & Thanh, Hung Vo & Soltanian, Mohamad Reza, 2024. "Exploring hydrogen geologic storage in China for future energy: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    2. Katarzyna Luboń & Radosław Tarkowski, 2024. "Hydrogen Storage in Deep Saline Aquifers: Non-Recoverable Cushion Gas after Storage," Energies, MDPI, vol. 17(6), pages 1-17, March.
    3. Zhu, Shijie & Shi, Xilin & Yang, Chunhe & Li, Yinping & Li, Hang & Yang, Kun & Wei, Xinxing & Bai, Weizheng & Liu, Xin, 2023. "Hydrogen loss of salt cavern hydrogen storage," Renewable Energy, Elsevier, vol. 218(C).
    4. Jahanbakhsh, Amir & Louis Potapov-Crighton, Alexander & Mosallanezhad, Abdolali & Tohidi Kaloorazi, Nina & Maroto-Valer, M. Mercedes, 2024. "Underground hydrogen storage: A UK perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    5. Mao, Shaowen & Chen, Bailian & Malki, Mohamed & Chen, Fangxuan & Morales, Misael & Ma, Zhiwei & Mehana, Mohamed, 2024. "Efficient prediction of hydrogen storage performance in depleted gas reservoirs using machine learning," Applied Energy, Elsevier, vol. 361(C).
    6. Tarkowski, Radosław & Lankof, Leszek & Luboń, Katarzyna & Michalski, Jan, 2024. "Hydrogen storage capacity of salt caverns and deep aquifers versus demand for hydrogen storage: A case study of Poland," Applied Energy, Elsevier, vol. 355(C).
    7. Wang, Heng & Xin, Yuchen & Kou, Zuhao & He, Chunyu & Li, Yunfei & Wang, Tongtong, 2024. "Unveil the role of engineering parameters on hydrogen recovery in deep saline aquifer, Rock Springs Uplift, Wyoming," Renewable Energy, Elsevier, vol. 225(C).
    8. Liang, Yushi & Wu, Chunbing & Ji, Xiaodong & Zhang, Mulan & Li, Yiran & He, Jianjun & Qin, Zhiheng, 2022. "Estimation of the influences of spatiotemporal variations in air density on wind energy assessment in China based on deep neural network," Energy, Elsevier, vol. 239(PC).
    9. Ming, Zeng & Song, Xue & Mingjuan, Ma & Xiaoli, Zhu, 2013. "New energy bases and sustainable development in China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 169-185.
    10. Bohang Liu & Lei Wang & Yintong Guo & Jing Li & Hanzhi Yang, 2022. "Experimental Investigation on the Evolution of Tensile Mechanical Behavior of Cement Stone Considering the Variation of Burial Depth," Energies, MDPI, vol. 15(19), pages 1-16, October.
    11. Zhao, Xiaoli & Cai, Qiong & Zhang, Sufang & Luo, Kaiyan, 2017. "The substitution of wind power for coal-fired power to realize China's CO2 emissions reduction targets in 2020 and 2030," Energy, Elsevier, vol. 120(C), pages 164-178.
    12. Pei, Wei & Chen, Yanning & Sheng, Kun & Deng, Wei & Du, Yan & Qi, Zhiping & Kong, Li, 2015. "Temporal-spatial analysis and improvement measures of Chinese power system for wind power curtailment problem," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 148-168.
    13. Shaojie Song & Haiyang Lin & Peter Sherman & Xi Yang & Chris P. Nielsen & Xinyu Chen & Michael B. McElroy, 2021. "Production of hydrogen from offshore wind in China and cost-competitive supply to Japan," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    14. Liu, Fa & Sun, Fubao & Liu, Wenbin & Wang, Tingting & Wang, Hong & Wang, Xunming & Lim, Wee Ho, 2019. "On wind speed pattern and energy potential in China," Applied Energy, Elsevier, vol. 236(C), pages 867-876.
    15. Liu, Zhengxuan & Zhou, Yuekuan & Yan, Jun & Tostado-Véliz, Marcos, 2023. "Frontier ocean thermal/power and solar PV systems for transformation towards net-zero communities," Energy, Elsevier, vol. 284(C).
    16. Svetlana Revinova & Inna Lazanyuk & Bella Gabrielyan & Tatevik Shahinyan & Yevgenya Hakobyan, 2024. "Hydrogen in Energy Transition: The Problem of Economic Efficiency, Environmental Safety, and Technological Readiness of Transportation and Storage," Resources, MDPI, vol. 13(7), pages 1-24, July.
    17. Zhou, Yuekuan, 2024. "AI-driven battery ageing prediction with distributed renewable community and E-mobility energy sharing," Renewable Energy, Elsevier, vol. 225(C).
    18. Lei Wang & Bohang Liu & Hanzhi Yang & Yintong Guo & Jing Li & Hejuan Liu, 2022. "Experimental Study on the Compressive and Shear Mechanical Properties of Cement–Formation Interface Considering Surface Roughness and Drilling Mud Contamination," Energies, MDPI, vol. 15(17), pages 1-17, September.
    19. He, Y.X. & Zhu, M.Z. & Xiong, W. & Zhang, T. & Ge, X.L., 2012. "Electricity transmission tariffs for large-scale wind power consumption in western Gansu province, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4543-4550.
    20. Barbara Uliasz-Misiak & Jacek Misiak, 2024. "Underground Gas Storage in Saline Aquifers: Geological Aspects," Energies, MDPI, vol. 17(7), pages 1-23, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:375:y:2024:i:c:s0306261924014764. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.