Promoting temperature control and energy conservation by smart thermal management using nanoparticle suspensions with tunable thermal conductivity
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2024.124097
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Kumar, Rishav & Panigrahi, Pradipta Kumar, 2024. "A hybrid battery thermal management system using ionic wind and phase change material," Applied Energy, Elsevier, vol. 359(C).
- Yin, Huibin & Gao, Xuenong & Ding, Jing & Zhang, Zhengguo & Fang, Yutang, 2010. "Thermal management of electronic components with thermal adaptation composite material," Applied Energy, Elsevier, vol. 87(12), pages 3784-3791, December.
- Tingting Du & Zixin Xiong & Luis Delgado & Weizhi Liao & Joseph Peoples & Rajath Kantharaj & Prabudhya Roy Chowdhury & Amy Marconnet & Xiulin Ruan, 2021. "Wide range continuously tunable and fast thermal switching based on compressible graphene composite foams," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
- Zhang, Ge & Cottrill, Anton L. & Koman, Volodymyr B. & Liu, Albert Tianxiang & Mahajan, Sayalee G. & Piephoff, D. Evan & Strano, Michael S., 2020. "Persistent, single-polarity energy harvesting from ambient thermal fluctuations using a thermal resonance device with thermal diodes," Applied Energy, Elsevier, vol. 280(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Meng, Z.N. & Zhang, P., 2017. "Experimental and numerical investigation of a tube-in-tank latent thermal energy storage unit using composite PCM," Applied Energy, Elsevier, vol. 190(C), pages 524-539.
- Ling, Ziye & Zhang, Zhengguo & Shi, Guoquan & Fang, Xiaoming & Wang, Lei & Gao, Xuenong & Fang, Yutang & Xu, Tao & Wang, Shuangfeng & Liu, Xiaohong, 2014. "Review on thermal management systems using phase change materials for electronic components, Li-ion batteries and photovoltaic modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 427-438.
- Zhang, P. & Xiao, X. & Ma, Z.W., 2016. "A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement," Applied Energy, Elsevier, vol. 165(C), pages 472-510.
- Ye, Hong & Wang, Zijun & Wang, Liwei, 2017. "Effects of PCM on power consumption and temperature control performance of a thermal control system subject to periodic ambient conditions," Applied Energy, Elsevier, vol. 190(C), pages 213-221.
- Zhang, P. & Meng, Z.N. & Zhu, H. & Wang, Y.L. & Peng, S.P., 2017. "Melting heat transfer characteristics of a composite phase change material fabricated by paraffin and metal foam," Applied Energy, Elsevier, vol. 185(P2), pages 1971-1983.
- Jiang, Zhu & Palacios, Anabel & Zou, Boyang & Zhao, Yanqi & Deng, Weiyu & Zhang, Xiaosong & Ding, Yulong, 2022. "A review on the fabrication methods for structurally stabilised composite phase change materials and their impacts on the properties of materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
- Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
- Srikanth, R. & Nemani, Pavan & Balaji, C., 2015. "Multi-objective geometric optimization of a PCM based matrix type composite heat sink," Applied Energy, Elsevier, vol. 156(C), pages 703-714.
- Du, Kun & Calautit, John & Wang, Zhonghua & Wu, Yupeng & Liu, Hao, 2018. "A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges," Applied Energy, Elsevier, vol. 220(C), pages 242-273.
- Zhang, Lei & Zhu, Jiaoqun & Zhou, Weibing & Wang, Jun & Wang, Yan, 2012. "Thermal and electrical conductivity enhancement of graphite nanoplatelets on form-stable polyethylene glycol/polymethyl methacrylate composite phase change materials," Energy, Elsevier, vol. 39(1), pages 294-302.
- Chase M. Hartquist & Buxuan Li & James H. Zhang & Zhaohan Yu & Guangxin Lv & Jungwoo Shin & Svetlana V. Boriskina & Gang Chen & Xuanhe Zhao & Shaoting Lin, 2024. "Reversible two-way tuning of thermal conductivity in an end-linked star-shaped thermoset," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
More about this item
Keywords
Smart thermal management; Thermal smart material; Nanoparticle suspension; Temperature control; Energy conservation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:374:y:2024:i:c:s0306261924014806. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.