IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v373y2024ics0306261924013643.html
   My bibliography  Save this article

A two-stage low-carbon economic coordinated dispatching model for generation-load-storage resources considering flexible supply-demand balance

Author

Listed:
  • Zhang, Yuanyuan
  • Zhao, Huiru
  • Qi, Ze
  • Li, Bingkang

Abstract

With the changes in energy structure and system configuration, the uncertainty on both the supply and demand sides of the power system will significantly increase. The approach of increasing reserves to cope with the uncertainty is becoming unsustainable both technically and economically. It is necessary to accurately characterize system flexibility and propose flexibility-oriented dispatching optimization strategies. Based on this, this paper conducts research on the evaluation system for flexibility supply-demand balance and the coordinated optimization dispatch strategy of generation-load-storage resources. Firstly, a flexibility demand-supply balance evaluation system is proposed, which covers the quantification of flexibility demand, the quantification of flexibility supply capability, and the design of flexibility metrics. Secondly, a two-stage optimization dispatching model for generation-load-storage resources is constructed. In stage 1, the optimization obtains the operating power of generation, load and storage resources to meet the load demand, while in stage 2, the flexibility supply potential is considered to optimize the redispatch power of the flexibility resources to meet the flexibility demand. Finally, simulations are conducted in a typical industrial park with generation, load, and storage resources, and the results show: 1) The quantification of flexibility demand based on the polytope form is more accurate, ensuring that the obtained flexibility supply-demand balance evaluation results can effectively support system flexibility dispatching; 2) Compared with the traditional dispatching strategy that consider reserve capacity, the operational cost of the dispatching strategy considering flexibility supply-demand characteristics in this paper decreased by 3.31%, environmental costs decreased by 4.56%, and the penalty cost for flexibility deficiency decreased by 17.37%. The research results can leverage the synergistic effect of generation -load-storage resources, achieving a scientific balance between the economy, low-carbon, and adequacy of the generation-load-storage system, and provide a scientific approach for considering flexible supply-demand balance in the power system dispatching, supporting the stable and sustainable operation of the high-penetration new energy system.

Suggested Citation

  • Zhang, Yuanyuan & Zhao, Huiru & Qi, Ze & Li, Bingkang, 2024. "A two-stage low-carbon economic coordinated dispatching model for generation-load-storage resources considering flexible supply-demand balance," Applied Energy, Elsevier, vol. 373(C).
  • Handle: RePEc:eee:appene:v:373:y:2024:i:c:s0306261924013643
    DOI: 10.1016/j.apenergy.2024.123981
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924013643
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123981?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oree, Vishwamitra & Sayed Hassen, Sayed Z., 2016. "A composite metric for assessing flexibility available in conventional generators of power systems," Applied Energy, Elsevier, vol. 177(C), pages 683-691.
    2. Papaefthymiou, Georgios & Haesen, Edwin & Sach, Thobias, 2018. "Power System Flexibility Tracker: Indicators to track flexibility progress towards high-RES systems," Renewable Energy, Elsevier, vol. 127(C), pages 1026-1035.
    3. Bai, Xueyan & Fan, Yanfang & Hou, Junjie & Liu, Junyi, 2023. "Evaluation method of renewable energy flexibility confidence capacity under different penetration rates," Energy, Elsevier, vol. 281(C).
    4. Huber, Matthias & Dimkova, Desislava & Hamacher, Thomas, 2014. "Integration of wind and solar power in Europe: Assessment of flexibility requirements," Energy, Elsevier, vol. 69(C), pages 236-246.
    5. Guo, Zheyu & Zheng, Yanan & Li, Gengyin, 2020. "Power system flexibility quantitative evaluation based on improved universal generating function method: A case study of Zhangjiakou," Energy, Elsevier, vol. 205(C).
    6. Ding, Zhetong & Li, Yaping & Zhang, Kaifeng & Peng, Jimmy Chih-Hsien, 2024. "Two-stage dynamic aggregation involving flexible resource composition and coordination based on submodular optimization," Applied Energy, Elsevier, vol. 360(C).
    7. Yamujala, Sumanth & Kushwaha, Priyanka & Jain, Anjali & Bhakar, Rohit & Wu, Jianzhong & Mathur, Jyotirmay, 2021. "A stochastic multi-interval scheduling framework to quantify operational flexibility in low carbon power systems," Applied Energy, Elsevier, vol. 304(C).
    8. Yasuda, Yoh & Carlini, Enrico Maria & Estanqueiro, Ana & Eriksen, Peter Børre & Flynn, Damian & Herre, Lars Finn & Hodge, Bri-Mathias & Holttinen, Hannele & Koivisto, Matti Juhani & Gómez-Lózaro, Emil, 2023. "Flexibility chart 2.0: An accessible visual tool to evaluate flexibility resources in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    9. Heggarty, Thomas & Bourmaud, Jean-Yves & Girard, Robin & Kariniotakis, Georges, 2019. "Multi-temporal assessment of power system flexibility requirement," Applied Energy, Elsevier, vol. 238(C), pages 1327-1336.
    10. Maeder, Mattia & Weiss, Olga & Boulouchos, Konstantinos, 2021. "Assessing the need for flexibility technologies in decarbonized power systems: A new model applied to Central Europe," Applied Energy, Elsevier, vol. 282(PA).
    11. Lechl, Michael & Fürmann, Tim & de Meer, Hermann & Weidlich, Anke, 2023. "A review of models for energy system flexibility requirements and potentials using the new FLEXBLOX taxonomy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heggarty, Thomas & Bourmaud, Jean-Yves & Girard, Robin & Kariniotakis, Georges, 2020. "Quantifying power system flexibility provision," Applied Energy, Elsevier, vol. 279(C).
    2. Yamujala, Sumanth & Kushwaha, Priyanka & Jain, Anjali & Bhakar, Rohit & Wu, Jianzhong & Mathur, Jyotirmay, 2021. "A stochastic multi-interval scheduling framework to quantify operational flexibility in low carbon power systems," Applied Energy, Elsevier, vol. 304(C).
    3. Guerra, K. & Haro, P. & Gutiérrez, R.E. & Gómez-Barea, A., 2022. "Facing the high share of variable renewable energy in the power system: Flexibility and stability requirements," Applied Energy, Elsevier, vol. 310(C).
    4. Brunner, Christoph & Deac, Gerda & Braun, Sebastian & Zöphel, Christoph, 2020. "The future need for flexibility and the impact of fluctuating renewable power generation," Renewable Energy, Elsevier, vol. 149(C), pages 1314-1324.
    5. Cany, C. & Mansilla, C. & Mathonnière, G. & da Costa, P., 2018. "Nuclear contribution to the penetration of variable renewable energy sources in a French decarbonised power mix," Energy, Elsevier, vol. 150(C), pages 544-555.
    6. Takeshita, Takuma & Aki, Hirohisa & Kawajiri, Kotaro & Ishida, Masayoshi, 2021. "Assessment of utilization of combined heat and power systems to provide grid flexibility alongside variable renewable energy systems," Energy, Elsevier, vol. 214(C).
    7. Heggarty, Thomas & Bourmaud, Jean-Yves & Girard, Robin & Kariniotakis, Georges, 2024. "Assessing the relative impacts of maximum investment rate and temporal detail in capacity expansion models applied to power systems," Energy, Elsevier, vol. 290(C).
    8. Thomas Heggarty & Jean-Yves Bourmaud & Robin Girard & Georges Kariniotakis, 2024. "Assessing the relative impacts of maximum investment rate and temporal detail in capacity expansion models applied to power systems," Post-Print hal-04383397, HAL.
    9. Heffron, Raphael J. & Körner, Marc-Fabian & Schöpf, Michael & Wagner, Jonathan & Weibelzahl, Martin, 2021. "The role of flexibility in the light of the COVID-19 pandemic and beyond: Contributing to a sustainable and resilient energy future in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    10. Xiong, Bobby & Predel, Johannes & Crespo del Granado, Pedro & Egging-Bratseth, Ruud, 2021. "Spatial flexibility in redispatch: Supporting low carbon energy systems with Power-to-Gas," Applied Energy, Elsevier, vol. 283(C).
    11. Chang-Gi Min & Mun-Kyeom Kim, 2017. "Net Load Carrying Capability of Generating Units in Power Systems," Energies, MDPI, vol. 10(8), pages 1-13, August.
    12. Sulman Shahzad & Elżbieta Jasińska, 2024. "Renewable Revolution: A Review of Strategic Flexibility in Future Power Systems," Sustainability, MDPI, vol. 16(13), pages 1-24, June.
    13. Bernath, Christiane & Deac, Gerda & Sensfuß, Frank, 2021. "Impact of sector coupling on the market value of renewable energies – A model-based scenario analysis," Applied Energy, Elsevier, vol. 281(C).
    14. Heffron, Raphael & Körner, Marc-Fabian & Wagner, Jonathan & Weibelzahl, Martin & Fridgen, Gilbert, 2020. "Industrial demand-side flexibility: A key element of a just energy transition and industrial development," Applied Energy, Elsevier, vol. 269(C).
    15. Deng, Xu & Lv, Tao & Xu, Jie & Hou, Xiaoran & Liu, Feng, 2022. "Assessing the integration effect of inter-regional transmission on variable power generation under renewable energy consumption policy in China," Energy Policy, Elsevier, vol. 170(C).
    16. Sreekumar, Sreenu & Yamujala, Sumanth & Sharma, Kailash Chand & Bhakar, Rohit & Simon, Sishaj P. & Rana, Ankur Singh, 2022. "Flexible Ramp Products: A solution to enhance power system flexibility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    17. Mohammad Mehdi Amiri & Mohammad Taghi Ameli & Goran Strbac & Danny Pudjianto & Hossein Ameli, 2024. "The Role of Flexibility in the Integrated Operation of Low-Carbon Gas and Electricity Systems: A Review," Energies, MDPI, vol. 17(9), pages 1-26, May.
    18. Guo, Zheyu & Zheng, Yanan & Li, Gengyin, 2020. "Power system flexibility quantitative evaluation based on improved universal generating function method: A case study of Zhangjiakou," Energy, Elsevier, vol. 205(C).
    19. Saleh Abujarad & Mohd Wazir Mustafa & Jasrul Jamani Jamian & Abdirahman M. Abdilahi & Jeroen D. M. De Kooning & Jan Desmet & Lieven Vandevelde, 2020. "An Adjusted Weight Metric to Quantify Flexibility Available in Conventional Generators for Low Carbon Power Systems," Energies, MDPI, vol. 13(21), pages 1-19, October.
    20. Ekata Kaushik & Vivek Prakash & Om Prakash Mahela & Baseem Khan & Almoataz Y. Abdelaziz & Junhee Hong & Zong Woo Geem, 2022. "Optimal Placement of Renewable Energy Generators Using Grid-Oriented Genetic Algorithm for Loss Reduction and Flexibility Improvement," Energies, MDPI, vol. 15(5), pages 1-20, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:373:y:2024:i:c:s0306261924013643. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.