IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v368y2024ics030626192400864x.html
   My bibliography  Save this article

Day-ahead scheduling of air-conditioners based on equivalent energy storage model under temperature-set-point control

Author

Listed:
  • Yu, Zhou-Chen
  • Bao, Yu-Qing
  • Yang, Xiao

Abstract

Air-conditioners (ACs) can fully utilize the inherent characteristics of storing heat/cold in demand response (DR), achieving peak load shifting and renewable energy consumption. However, traditional control strategies based on compressor ON/OFF state require retrofitting of the internal components of ACs, making it challenging to implement directly through ACs' infrared control protocol. Given the widespread availability of infrared temperature-set-point (TSP) adjustment functions in existing ACs, this paper proposes a day-ahead optimal scheduling strategy of aggregate ACs under TSP control. Based on the second-order equivalent thermodynamic parameter (ETP) model, the TSP adjustment characteristics are considered to establish the equivalent energy storage (EES) model of ACs. On this basis, taking the overall optimization objectives of power system into account, the optimal scheduling model of aggregate ACs under TSP control is established to solve collaborative optimization problems for power generation and consumption. Case study demonstrates that, compared to optimal scheduling models based on traditional EES model, the proposed model exhibits superior peak load shifting effects and allows for smooth control of ACs through the issuance of control commands.

Suggested Citation

  • Yu, Zhou-Chen & Bao, Yu-Qing & Yang, Xiao, 2024. "Day-ahead scheduling of air-conditioners based on equivalent energy storage model under temperature-set-point control," Applied Energy, Elsevier, vol. 368(C).
  • Handle: RePEc:eee:appene:v:368:y:2024:i:c:s030626192400864x
    DOI: 10.1016/j.apenergy.2024.123481
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192400864X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123481?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fleschutz, Markus & Bohlayer, Markus & Braun, Marco & Henze, Gregor & Murphy, Michael D., 2021. "The effect of price-based demand response on carbon emissions in European electricity markets: The importance of adequate carbon prices," Applied Energy, Elsevier, vol. 295(C).
    2. Wei, Congying & Xu, Jian & Liao, Siyang & Sun, Yuanzhang & Jiang, Yibo & Ke, Deping & Zhang, Zhen & Wang, Jing, 2018. "A bi-level scheduling model for virtual power plants with aggregated thermostatically controlled loads and renewable energy," Applied Energy, Elsevier, vol. 224(C), pages 659-670.
    3. Ma, Siyu & Liu, Hui & Wang, Ni & Huang, Lidong & Goh, Hui Hwang, 2023. "Incentive-based demand response under incomplete information based on the deep deterministic policy gradient," Applied Energy, Elsevier, vol. 351(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Siyu & Liu, Hui & Wang, Ni & Huang, Lidong & Su, Jinshuo & Zhao, Teyang, 2024. "Incentive-based integrated demand response with multi-energy time-varying carbon emission factors," Applied Energy, Elsevier, vol. 359(C).
    2. Hui Wang & Yao Xu, 2024. "Optimized Decision-Making for Multi-Market Green Power Transactions of Electricity Retailers under Demand-Side Response: The Chinese Market Case Study," Energies, MDPI, vol. 17(11), pages 1-15, May.
    3. Ju, Liwei & Yin, Zhe & Lu, Xiaolong & Yang, Shenbo & Li, Peng & Rao, Rao & Tan, Zhongfu, 2022. "A Tri-dimensional Equilibrium-based stochastic optimal dispatching model for a novel virtual power plant incorporating carbon Capture, Power-to-Gas and electric vehicle aggregator," Applied Energy, Elsevier, vol. 324(C).
    4. Dong, Zihang & Zhang, Xi & Li, Yijun & Strbac, Goran, 2023. "Values of coordinated residential space heating in demand response provision," Applied Energy, Elsevier, vol. 330(PB).
    5. Wolf, Isabel & Holzapfel, Peter K.R. & Meschede, Henning & Finkbeiner, Matthias, 2023. "On the potential of temporally resolved GHG emission factors for load shifting: A case study on electrified steam generation," Applied Energy, Elsevier, vol. 348(C).
    6. Andre Leippi & Markus Fleschutz & Michael D. Murphy, 2022. "A Review of EV Battery Utilization in Demand Response Considering Battery Degradation in Non-Residential Vehicle-to-Grid Scenarios," Energies, MDPI, vol. 15(9), pages 1-22, April.
    7. Luo, Zhe & Hong, SeungHo & Ding, YueMin, 2019. "A data mining-driven incentive-based demand response scheme for a virtual power plant," Applied Energy, Elsevier, vol. 239(C), pages 549-559.
    8. Bardwell, Louise & Blackhall, Lachlan & Shaw, Marnie, 2023. "Emissions and prices are anticorrelated in Australia’s electricity grid, undermining the potential of energy storage to support decarbonisation," Energy Policy, Elsevier, vol. 173(C).
    9. Wang, Xiao-Qing & Su, Chi-Wei & Lobonţ, Oana-Ramona & Li, Hao & Nicoleta-Claudia, Moldovan, 2022. "Is China's carbon trading market efficient? Evidence from emissions trading scheme pilots," Energy, Elsevier, vol. 245(C).
    10. Wang, Jun & Xu, Jian & Ke, Deping & Liao, Siyang & Sun, Yuanzhang & Wang, Jingjing & Yao, Liangzhong & Mao, Beiling & Wei, Congying, 2023. "A tri-level framework for distribution-level market clearing considering strategic participation of electrical vehicles and interactions with wholesale market," Applied Energy, Elsevier, vol. 329(C).
    11. Markus Fleschutz & Markus Bohlayer & Marco Braun & Michael D. Murphy, 2023. "From prosumer to flexumer: Case study on the value of flexibility in decarbonizing the multi-energy system of a manufacturing company," Papers 2301.07997, arXiv.org.
    12. Cui, Feifei & An, Dou & Xi, Huan, 2024. "Integrated energy hub dispatch with a multi-mode CAES–BESS hybrid system: An option-based hierarchical reinforcement learning approach," Applied Energy, Elsevier, vol. 374(C).
    13. Bao, Peng & Xu, Qingshan & Yang, Yongbiao & Nan, Yu & Wang, Yucui, 2024. "Efficient virtual power plant management strategy and Leontief-game pricing mechanism towards real-time economic dispatch support: A case study of large-scale 5G base stations," Applied Energy, Elsevier, vol. 358(C).
    14. Juan M. Lujano-Rojas & José M. Yusta & José Antonio Domínguez-Navarro, 2019. "Mitigating Energy System Vulnerability by Implementing a Microgrid with a Distributed Management Algorithm," Energies, MDPI, vol. 12(4), pages 1-30, February.
    15. Zeng, Yuan & Zhang, Ruiwen & Wang, Dong & Mu, Yunfei & Jia, Hongjie, 2019. "A regional power grid operation and planning method considering renewable energy generation and load control," Applied Energy, Elsevier, vol. 237(C), pages 304-313.
    16. Yu, Songyuan & Fang, Fang & Liu, Yajuan & Liu, Jizhen, 2019. "Uncertainties of virtual power plant: Problems and countermeasures," Applied Energy, Elsevier, vol. 239(C), pages 454-470.
    17. Eduardo J. Salazar & Mauro Jurado & Mauricio E. Samper, 2023. "Reinforcement Learning-Based Pricing and Incentive Strategy for Demand Response in Smart Grids," Energies, MDPI, vol. 16(3), pages 1-33, February.
    18. Ruhnau, Oliver & Schiele, Johanna, 2023. "Flexible green hydrogen: The effect of relaxing simultaneity requirements on project design, economics, and power sector emissions," Energy Policy, Elsevier, vol. 182(C).
    19. Zhang, Hui & Wang, Jiye & Zhao, Xiongwen & Yang, Jingqi & Bu sinnah, Zainab Ali, 2023. "Modeling a hydrogen-based sustainable multi-carrier energy system using a multi-objective optimization considering embedded joint chance constraints," Energy, Elsevier, vol. 278(C).
    20. Kong, Xiangyu & Xiao, Jie & Liu, Dehong & Wu, Jianzhong & Wang, Chengshan & Shen, Yu, 2020. "Robust stochastic optimal dispatching method of multi-energy virtual power plant considering multiple uncertainties," Applied Energy, Elsevier, vol. 279(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:368:y:2024:i:c:s030626192400864x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.