IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i6p1059-d101967.html
   My bibliography  Save this article

Identifying Clusters of Complex Urban–Rural Issues as Part of Policy Making Process Using a Network Analysis Approach: A Case Study in Bahía de Los Ángeles, Mexico

Author

Listed:
  • Javier Sandoval

    (Computer Engineering Department, Autonomous University of Baja California, 22390 Tijuana, B.C., Mexico)

  • Manuel Castañón-Puga

    (Computer Engineering Department, Autonomous University of Baja California, 22390 Tijuana, B.C., Mexico)

  • Carelia Gaxiola-Pacheco

    (Computer Engineering Department, Autonomous University of Baja California, 22390 Tijuana, B.C., Mexico)

  • Eugenio Dante Suarez

    (Finance & Decision Sciences Department, Trinity University, San Antonio, TX 78212, USA)

Abstract

Improving human settlements diagnosis is a key factor in effective urban planning and the design of efficient policy making. In this paper, we illustrate how network theory concepts can be applied to reveal the topological structure of functional relationships in a network of heterogeneous urban–rural issues. This mapping is done using clustering algorithms and centrality value techniques. By analyzing emergent groups of urban–rural related issues, our methodology was applied to a rural community, considering in this exercise environmental matters and real estate interests as a way to better understand the structure of salient issues in the context of its urban development program design. Results show clusters that arrange themselves not by an obvious similarity in their constituent components, but by relations observed in urban–rural settings that hint on the issues that the urban development program must focus. Due to its complex nature, the classification of these emerging clusters and how they must be treated in traditional planning instruments is a new challenge that this novel methodology reveals.

Suggested Citation

  • Javier Sandoval & Manuel Castañón-Puga & Carelia Gaxiola-Pacheco & Eugenio Dante Suarez, 2017. "Identifying Clusters of Complex Urban–Rural Issues as Part of Policy Making Process Using a Network Analysis Approach: A Case Study in Bahía de Los Ángeles, Mexico," Sustainability, MDPI, vol. 9(6), pages 1-17, June.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:6:p:1059-:d:101967
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/6/1059/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/6/1059/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. repec:cup:cbooks:9780511771576 is not listed on IDEAS
    2. Easley,David & Kleinberg,Jon, 2010. "Networks, Crowds, and Markets," Cambridge Books, Cambridge University Press, number 9780521195331, October.
    3. Feng Xie & David M. Levinson, 2011. "Evolving Transportation Networks," Transportation Research, Economics and Policy, Springer, number 978-1-4419-9804-0, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rozhkov, Anton, 2024. "Applying graph theory to find key leverage points in the transition toward urban renewable energy systems," Applied Energy, Elsevier, vol. 361(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blazquez-Soriano, Amparo & Ramos-Sandoval, Rosmery, 2022. "Information transfer as a tool to improve the resilience of farmers against the effects of climate change: The case of the Peruvian National Agrarian Innovation System," Agricultural Systems, Elsevier, vol. 200(C).
    2. Martin L. Weitzman, 2015. "A Voting Architecture for the Governance of Free-Driver Externalities, with Application to Geoengineering," Scandinavian Journal of Economics, Wiley Blackwell, vol. 117(4), pages 1049-1068, October.
    3. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    4. Guo Weilong & Minca Andreea & Wang Li, 2016. "The topology of overlapping portfolio networks," Statistics & Risk Modeling, De Gruyter, vol. 33(3-4), pages 139-155, December.
    5. Thomas J. Sargent & John Stachurski, 2022. "Economic Networks: Theory and Computation," Papers 2203.11972, arXiv.org, revised Jul 2022.
    6. Bernd (B.) Heidergott & Jia-Ping Huang & Ines (I.) Lindner, 2018. "Naive Learning in Social Networks with Random Communication," Tinbergen Institute Discussion Papers 18-018/II, Tinbergen Institute.
    7. Johannes M. Bauer & Michael Latzer, 2016. "The economics of the Internet: an overview," Chapters, in: Johannes M. Bauer & Michael Latzer (ed.), Handbook on the Economics of the Internet, chapter 1, pages 3-20, Edward Elgar Publishing.
    8. Mengying Cui & David Levinson, 2018. "Accessibility analysis of risk severity," Transportation, Springer, vol. 45(4), pages 1029-1050, July.
    9. Kobayashi, Teruyoshi & Takaguchi, Taro, 2018. "Identifying relationship lending in the interbank market: A network approach," Journal of Banking & Finance, Elsevier, vol. 97(C), pages 20-36.
    10. Konstantinos Antoniadis & Kostas Zafiropoulos & Vasiliki Vrana, 2016. "A Method for Assessing the Performance of e-Government Twitter Accounts," Future Internet, MDPI, vol. 8(2), pages 1-18, April.
    11. Maness, Michael & Cirillo, Cinzia, 2016. "An indirect latent informational conformity social influence choice model: Formulation and case study," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 75-101.
    12. Bauer, Johannes M., 2014. "Platforms, systems competition, and innovation: Reassessing the foundations of communications policy," Telecommunications Policy, Elsevier, vol. 38(8), pages 662-673.
    13. Julia Neidhardt & Nataliia Rümmele & Hannes Werthner, 0. "Predicting happiness: user interactions and sentiment analysis in an online travel forum," Information Technology & Tourism, Springer, vol. 0, pages 1-19.
    14. OKUBO Toshihiro & ONO Yukako & SAITO Yukiko, 2014. "Roles of Wholesalers in Transaction Networks," Discussion papers 14059, Research Institute of Economy, Trade and Industry (RIETI).
    15. Glover, Dominic & Kim, Sung Kyu & Stone, Glenn Davis, 2020. "Golden Rice and technology adoption theory: A study of seed choice dynamics among rice growers in the Philippines," Technology in Society, Elsevier, vol. 60(C).
    16. Daron Acemoglu & Victor Chernozhukov & Iván Werning & Michael D. Whinston, 2021. "Optimal Targeted Lockdowns in a Multigroup SIR Model," American Economic Review: Insights, American Economic Association, vol. 3(4), pages 487-502, December.
    17. Mark Braverman & Jing Chen & Sampath Kannan, 2016. "Optimal Provision-After-Wait in Healthcare," Mathematics of Operations Research, INFORMS, vol. 41(1), pages 352-376, February.
    18. Lomi, Alessandro & Fonti, Fabio, 2012. "Networks in markets and the propensity of companies to collaborate: An empirical test of three mechanisms," Economics Letters, Elsevier, vol. 114(2), pages 216-220.
    19. Zhang, Xuxi & Liu, Xianping & Lewis, Frank L. & Wang, Xia, 2020. "Bipartite tracking consensus of nonlinear multi-agent systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    20. David Levinson & David Giacomin & Antony Badsey-Ellis, 2014. "Accessibility and the choice of network investments in the London Underground," Working Papers 000124, University of Minnesota: Nexus Research Group.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:6:p:1059-:d:101967. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.