IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v262y2020ics0306261920300477.html
   My bibliography  Save this article

Solar Salt – Pushing an old material for energy storage to a new limit

Author

Listed:
  • Bonk, Alexander
  • Braun, Markus
  • Sötz, Veronika A.
  • Bauer, Thomas

Abstract

The implementation of inexpensive and reliable energy storage technologies is crucial for the decarbonisation of energy intensive industry branches and energy supply. Sensible thermal energy storage (TES) in molten salts is a key technology for storage of heat in the scale of gigawatt hours but currently limited to operating temperatures of 560 °C. Increasing the maximum operating temperature while maintaining thermal stability of the storage medium is one of the main challenges next-Generation TES systems are facing. Extending the upper temperature limit by only 40 °C increases the storage capacity by more than 16% allowing for more compact storage designs and cost savings in the $ million-range for large scale storage units. Here we propose a novel storage technology from a materials point of view that pushes the thermal stability limit of Solar Salt up to 600 °C by simply but effectively sealing the storage unit including the gas system. The concentration of the unstable nitrite ion and of the corrosive oxide ion could be reduced by 16% and 75%, respectively at 600 °C, compared to a salt system with open atmosphere. We present clear evidence of the enhanced thermal stability in long-term, 100 g-scale test campaigns at previously unequalled temperatures. These findings constitute a major advance in the design and engineering of next generation storage systems.

Suggested Citation

  • Bonk, Alexander & Braun, Markus & Sötz, Veronika A. & Bauer, Thomas, 2020. "Solar Salt – Pushing an old material for energy storage to a new limit," Applied Energy, Elsevier, vol. 262(C).
  • Handle: RePEc:eee:appene:v:262:y:2020:i:c:s0306261920300477
    DOI: 10.1016/j.apenergy.2020.114535
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920300477
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.114535?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bauer, Thomas & Pfleger, Nicole & Breidenbach, Nils & Eck, Markus & Laing, Doerte & Kaesche, Stefanie, 2013. "Material aspects of Solar Salt for sensible heat storage," Applied Energy, Elsevier, vol. 111(C), pages 1114-1119.
    2. Robert Pitz-Paal, 2017. "Concentrating solar power: Still small but learning fast," Nature Energy, Nature, vol. 2(7), pages 1-2, July.
    3. Fernández, Angel G. & Gomez-Vidal, Judith & Oró, Eduard & Kruizenga, Alan & Solé, Aran & Cabeza, Luisa F., 2019. "Mainstreaming commercial CSP systems: A technology review," Renewable Energy, Elsevier, vol. 140(C), pages 152-176.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tescari, Stefania & Neumann, Nicole Carina & Sundarraj, Pradeepkumar & Moumin, Gkiokchan & Rincon Duarte, Juan Pablo & Linder, Marc & Roeb, Martin, 2022. "Storing solar energy in continuously moving redox particles – Experimental analysis of charging and discharging reactors," Applied Energy, Elsevier, vol. 308(C).
    2. Caron, Simon & Garrido, Jorge & Ballestrín, Jesus & Sutter, Florian & Röger, Marc & Manzano-Agugliaro, Francisco, 2022. "A comparative analysis of opto-thermal figures of merit for high temperature solar thermal absorber coatings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    3. Zhang, Shuai & Yan, Yuying, 2023. "Energy, exergy and economic analysis of ceramic foam-enhanced molten salt as phase change material for medium- and high-temperature thermal energy storage," Energy, Elsevier, vol. 262(PA).
    4. Laporte-Azcué, M. & Rodríguez-Sánchez, M.R., 2024. "Thermal efficiency and endurance enhancement of tubular solar receivers using functionally graded materials," Applied Energy, Elsevier, vol. 360(C).
    5. Julian Steinbrecher & Markus Braun & Thomas Bauer & Sebastian Kunkel & Alexander Bonk, 2023. "Solar Salt above 600 °C: Impact of Experimental Design on Thermodynamic Stability Results," Energies, MDPI, vol. 16(14), pages 1-16, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adrián Caraballo & Santos Galán-Casado & Ángel Caballero & Sara Serena, 2021. "Molten Salts for Sensible Thermal Energy Storage: A Review and an Energy Performance Analysis," Energies, MDPI, vol. 14(4), pages 1-15, February.
    2. Wang, Qiliang & Shen, Boxu & Huang, Junchao & Yang, Honglun & Pei, Gang & Yang, Hongxing, 2021. "A spectral self-regulating parabolic trough solar receiver integrated with vanadium dioxide-based thermochromic coating," Applied Energy, Elsevier, vol. 285(C).
    3. Mohammad, Mehedi Bin & Brooks, Geoffrey Alan & Rhamdhani, M. Akbar, 2017. "Thermal analysis of molten ternary lithium-sodium-potassium nitrates," Renewable Energy, Elsevier, vol. 104(C), pages 76-87.
    4. Biswas, D.B. & Bose, S. & Dalvi, V.H. & Deshmukh, S.P. & Shenoy, N.V. & Panse, S.V. & Joshi, J.B., 2020. "A techno-economic comparison between piston steam engines as dispatchable power generation systems for renewable energy with concentrated solar harvesting and thermal storage against solar photovoltai," Energy, Elsevier, vol. 213(C).
    5. Wang, Qiliang & Yao, Yao & Shen, Zhicheng & Yang, Hongxing, 2023. "A hybrid parabolic trough solar collector system integrated with photovoltaics," Applied Energy, Elsevier, vol. 329(C).
    6. Delise, T. & Tizzoni, A.C. & Menale, C. & Telling, M.T.F. & Bubbico, R. & Crescenzi, T. & Corsaro, N. & Sau, S. & Licoccia, S., 2020. "Technical and economic analysis of a CSP plant presenting a low freezing ternary mixture as storage and transfer fluid," Applied Energy, Elsevier, vol. 265(C).
    7. Merad, Faycel & Labar, Hocine & Samira KELAIAIA, Mounia & Necaibia, Salah & Djelailia, Okba, 2019. "A maximum power control based on flexible collector applied to concentrator solar power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 315-331.
    8. Vasallo, Manuel Jesús & Cojocaru, Emilian Gelu & Gegúndez, Manuel Emilio & Marín, Diego, 2021. "Application of data-based solar field models to optimal generation scheduling in concentrating solar power plants," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 1130-1149.
    9. Bravo, Ruben & Ortiz, Carlos & Chacartegui, Ricardo & Friedrich, Daniel, 2021. "Multi-objective optimisation and guidelines for the design of dispatchable hybrid solar power plants with thermochemical energy storage," Applied Energy, Elsevier, vol. 282(PB).
    10. Kawaguchi, Takahiro & Sakai, Hiroki & Sheng, Nan & Kurniawan, Ade & Nomura, Takahiro, 2020. "Microencapsulation of Zn-Al alloy as a new phase change material for middle-high-temperature thermal energy storage applications," Applied Energy, Elsevier, vol. 276(C).
    11. Fernández, Angel G. & Gomez-Vidal, Judith & Oró, Eduard & Kruizenga, Alan & Solé, Aran & Cabeza, Luisa F., 2019. "Mainstreaming commercial CSP systems: A technology review," Renewable Energy, Elsevier, vol. 140(C), pages 152-176.
    12. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    13. Wu, Chunlei & Wang, Qing & Wang, Xinmin & Sun, Shipeng & Wang, Yuqi & Wu, Shuang & Bai, Jingru & Sheng, Hongyu & Zhang, Jinghui, 2024. "Al2O3 nanoparticles integration for comprehensive enhancement of eutectic salt thermal performance: Experimental design, molecular dynamics calculations, and system simulation studies," Energy, Elsevier, vol. 292(C).
    14. Yang, He & Li, Jinduo & Ge, Zhihua & Yang, Lijun & Du, Xiaoze, 2022. "Dynamic characteristics and control strategy of pumped thermal electricity storage with reversible Brayton cycle," Renewable Energy, Elsevier, vol. 198(C), pages 1341-1353.
    15. Sau, S. & Corsaro, N. & Crescenzi, T. & D’Ottavi, C. & Liberatore, R. & Licoccia, S. & Russo, V. & Tarquini, P. & Tizzoni, A.C., 2016. "Techno-economic comparison between CSP plants presenting two different heat transfer fluids," Applied Energy, Elsevier, vol. 168(C), pages 96-109.
    16. Kareem Noureldin & Tobias Hirsch & Bijan Nouri & Zeyad Yasser & Robert Pitz-Paal, 2021. "Evaluating the Potential Benefit of Using Nowcasting Systems to Improve the Yield of Parabolic Trough Power Plants with Single-Phase HTF," Energies, MDPI, vol. 14(3), pages 1-21, February.
    17. Du, Lichan & Ding, Jing & Tian, Heqing & Wang, Weilong & Wei, Xiaolan & Song, Ming, 2017. "Thermal properties and thermal stability of the ternary eutectic salt NaCl-CaCl2-MgCl2 used in high-temperature thermal energy storage process," Applied Energy, Elsevier, vol. 204(C), pages 1225-1230.
    18. Wang, Wen-Qi & Li, Ming-Jia & Cheng, Ze-Dong & Li, Dong & Liu, Zhan-Bin, 2021. "Coupled optical-thermal-stress characteristics of a multi-tube external molten salt receiver for the next generation concentrating solar power," Energy, Elsevier, vol. 233(C).
    19. Yang, He & Li, Jinduo & Ge, Zhihua & Yang, Lijun & Du, Xiaoze, 2023. "Dynamic performance for discharging process of pumped thermal electricity storage with reversible Brayton cycle," Energy, Elsevier, vol. 263(PD).
    20. Ehtiwesh, Amin & Kutlu, Cagri & Su, Yuehong & Riffat, Saffa, 2023. "Modelling and performance evaluation of a direct steam generation solar power system coupled with steam accumulator to meet electricity demands for a hospital under typical climate conditions in Libya," Renewable Energy, Elsevier, vol. 206(C), pages 795-807.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:262:y:2020:i:c:s0306261920300477. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.