IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v359y2024ics0306261923019736.html
   My bibliography  Save this article

Degradation mechanisms and mitigation strategies of direct methane solid oxide fuel cells

Author

Listed:
  • Li, Haolong
  • Wei, Wei
  • Zhang, Tuo
  • Liu, Fengxia
  • Xu, Xiaofei
  • Li, Zhiyi
  • Liu, Zhijun

Abstract

The gradual degradation of the electrical properties of solid oxide fuel cells (SOFC) when operating on C-containing fuels poses a significant obstacle to their widespread implementation in industry. This paper investigates the distribution of carbon deposition and its structural evolution in the traditional SOFC electrode (Ni/YSZ). The carbon deposition weight in direct methane SOFC increases linearly with exposure times without electrochemical reactions. The carbon initially deposits at the triple-phase boundary (TPB) of the anode, subsequently covering the surface of Ni particles and eventually accumulating to form a carbon deposit layer. Three methods for alleviating carbon deposition are compared. The polarization current could inhibit the carbon deposition but the high stress within the cell had resulted in the brittleness of the electrode, as well as significant coking in the central region of the anode after 26 h. Alternating changes in methane and hydrogen can significantly reduce the degradation rate of the cell. The reasonable gas switching frequency is from 60 min to 120 min. After high electrolytic current, the gap between the anode and the electrolyte can be achieved at 68.2 μm.

Suggested Citation

  • Li, Haolong & Wei, Wei & Zhang, Tuo & Liu, Fengxia & Xu, Xiaofei & Li, Zhiyi & Liu, Zhijun, 2024. "Degradation mechanisms and mitigation strategies of direct methane solid oxide fuel cells," Applied Energy, Elsevier, vol. 359(C).
  • Handle: RePEc:eee:appene:v:359:y:2024:i:c:s0306261923019736
    DOI: 10.1016/j.apenergy.2023.122609
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923019736
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122609?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Haolong & Wei, Wei & Liu, Fengxia & Xu, Xiaofei & Li, Zhiyi & Liu, Zhijun, 2023. "Identification of internal polarization dynamics for solid oxide fuel cells investigated by electrochemical impedance spectroscopy and distribution of relaxation times," Energy, Elsevier, vol. 267(C).
    2. Fan, Liyuan & Li, Chao'en & van Biert, Lindert & Zhou, Shou-Han & Tabish, Asif Nadeem & Mokhov, Anatoli & Aravind, Purushothaman Vellayani & Cai, Weiwei, 2022. "Advances on methane reforming in solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    3. Xu, Haoran & Chen, Bin & Tan, Peng & Xuan, Jin & Maroto-Valer, M. Mercedes & Farrusseng, David & Sun, Qiong & Ni, Meng, 2019. "Modeling of all-porous solid oxide fuel cells with a focus on the electrolyte porosity design," Applied Energy, Elsevier, vol. 235(C), pages 602-611.
    4. Quach, Thai-Quyen & Giap, Van-Tien & Keun Lee, Dong & Pineda Israel, Torres & Young Ahn, Kook, 2022. "High-efficiency ammonia-fed solid oxide fuel cell systems for distributed power generation," Applied Energy, Elsevier, vol. 324(C).
    5. Lv, Xiuqing & Chen, Huili & Zhou, Wei & Cheng, Fangqin & Li, Si-Dian & Shao, Zongping, 2020. "Direct-methane solid oxide fuel cells with an in situ formed Ni–Fe alloy composite catalyst layer over Ni–YSZ anodes," Renewable Energy, Elsevier, vol. 150(C), pages 334-341.
    6. Yin, Cong & Cao, Jishen & Tang, Qilin & Su, Yanghuai & Wang, Renkang & Li, Kai & Tang, Hao, 2022. "Study of internal performance of commercial-size fuel cell stack with 3D multi-physical model and high resolution current mapping," Applied Energy, Elsevier, vol. 323(C).
    7. Mei, Shuxue & Lu, Xiaorui & Zhu, Yu & Wang, Shixue, 2021. "Thermodynamic assessment of a system configuration strategy for a cogeneration system combining SOFC, thermoelectric generator, and absorption heat pump," Applied Energy, Elsevier, vol. 302(C).
    8. Kistner, Lukas & Bensmann, Astrid & Hanke-Rauschenbach, Richard, 2022. "Optimal Design of a Distributed Ship Power System with Solid Oxide Fuel Cells under the Consideration of Component Malfunctions," Applied Energy, Elsevier, vol. 316(C).
    9. Du, Haixia & Shao, Zongping, 2022. "Synergistic effects between solid potato waste and waste activated sludge for waste-to-power conversion in microbial fuel cells," Applied Energy, Elsevier, vol. 314(C).
    10. John T. S. Irvine & Dragos Neagu & Maarten C. Verbraeken & Christodoulos Chatzichristodoulou & Christopher Graves & Mogens B. Mogensen, 2016. "Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers," Nature Energy, Nature, vol. 1(1), pages 1-13, January.
    11. Xiao, Gang & Sun, Anwei & Liu, Hongwei & Ni, Meng & Xu, Haoran, 2023. "Thermal management of reversible solid oxide cells in the dynamic mode switching," Applied Energy, Elsevier, vol. 331(C).
    12. Ma, Tao & Zhang, Yijie & Gu, Wenbo & Xiao, Gang & Yang, Hongxing & Wang, Shuxiao, 2022. "Strategy comparison and techno-economic evaluation of a grid-connected photovoltaic-battery system," Renewable Energy, Elsevier, vol. 197(C), pages 1049-1060.
    13. Lei Yang & YongMan Choi & Wentao Qin & Haiyan Chen & Kevin Blinn & Mingfei Liu & Ping Liu & Jianming Bai & Trevor A. Tyson & Meilin Liu, 2011. "Promotion of water-mediated carbon removal by nanostructured barium oxide/nickel interfaces in solid oxide fuel cells," Nature Communications, Nature, vol. 2(1), pages 1-9, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Nan & Zhang, Hanfei & Duan, Liqiang & Wang, Qiushi & Bischi, Aldo & Desideri, Umberto, 2023. "Techno-economic analysis of a novel solar-driven PEMEC-SOFC-based multi-generation system coupled parabolic trough photovoltaic thermal collector and thermal energy storage," Applied Energy, Elsevier, vol. 331(C).
    2. Li, Bangxin & Irvine, John T.S. & Ni, Jiupai & Ni, Chengsheng, 2022. "High-performance and durable alcohol-fueled symmetrical solid oxide fuel cell based on ferrite perovskite electrode," Applied Energy, Elsevier, vol. 306(PB).
    3. Petronilla Fragiacomo & Francesco Piraino & Matteo Genovese & Orlando Corigliano & Giuseppe De Lorenzo, 2023. "Experimental Activities on a Hydrogen-Powered Solid Oxide Fuel Cell System and Guidelines for Its Implementation in Aviation and Maritime Sectors," Energies, MDPI, vol. 16(15), pages 1-25, July.
    4. Roy, Dibyendu & Roy, Sumit & Smallbone, Andrew & Roskilly, Anthony Paul, 2024. "Assessing the techno-economic viability of a trigeneration system integrating ammonia-fuelled solid oxide fuel cell," Applied Energy, Elsevier, vol. 357(C).
    5. Zarabi Golkhatmi, Sanaz & Asghar, Muhammad Imran & Lund, Peter D., 2022. "A review on solid oxide fuel cell durability: Latest progress, mechanisms, and study tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    6. Rahmani, Ebrahim & Moradi, Tofigh & Ghandehariun, Samane & Naterer, Greg F. & Ranjbar, Amirhossein, 2023. "Enhanced mass transfer and water discharge in a proton exchange membrane fuel cell with a raccoon channel flow field," Energy, Elsevier, vol. 264(C).
    7. Iliya Krastev Iliev & Antonina Andreevna Filimonova & Andrey Alexandrovich Chichirov & Natalia Dmitrievna Chichirova & Alexander Vadimovich Pechenkin & Artem Sergeevich Vinogradov, 2023. "Theoretical and Experimental Studies of Combined Heat and Power Systems with SOFCs," Energies, MDPI, vol. 16(4), pages 1-17, February.
    8. Mohamad Fairus Rabuni & Tao Li & Mohd Hafiz Dzarfan Othman & Faidzul Hakim Adnan & Kang Li, 2023. "Progress in Solid Oxide Fuel Cells with Hydrocarbon Fuels," Energies, MDPI, vol. 16(17), pages 1-36, September.
    9. Xinjie Xu & Kai Li & Zhenjie Liao & Jishen Cao & Renkang Wang, 2022. "A Closed-Loop Water Management Methodology for PEM Fuel Cell System Based on Impedance Information Feedback," Energies, MDPI, vol. 15(20), pages 1-16, October.
    10. Chen, Shuxian & Dai, Xiaohu & Yang, Donghai & Dai, Lingling & Hua, Yu, 2023. "Enhancing PHA production through metal-organic frameworks: Mechanisms involving superproton transport and bacterial metabolic pathways," Applied Energy, Elsevier, vol. 348(C).
    11. Zhao, Kai & Lu, Jiaxin & Le, Long & Coyle, Chris & Marina, Olga A. & Huang, Kevin, 2024. "A high-performance intermediate temperature reversible solid oxide cell with a new barrier layer free oxygen electrode," Applied Energy, Elsevier, vol. 361(C).
    12. Ma, Shuai & Lin, Meng & Lin, Tzu-En & Lan, Tian & Liao, Xun & Maréchal, François & Van herle, Jan & Yang, Yongping & Dong, Changqing & Wang, Ligang, 2021. "Fuel cell-battery hybrid systems for mobility and off-grid applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    13. Yu, Xianxian & Cai, Shanshan & Luo, Xiaobing & Tu, Zhengkai, 2024. "Barrel effect in an air-cooled proton exchange membrane fuel cell stack," Energy, Elsevier, vol. 286(C).
    14. Lu, Guolong & Liu, Mingxin & Su, Xunkang & Zheng, Tongxi & Luan, Yang & Fan, Wenxuan & Cui, Hao & Liu, Zhenning, 2024. "Study on counter-flow mass transfer characteristics and performance optimization of commercial large-scale proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 359(C).
    15. Wang, Chuyao & Ji, Jie & Song, Zhiying & Ke, Wei, 2024. "Performance analysis and capacity configuration of building energy system integrated with PV/T technology under different operation strategies," Energy, Elsevier, vol. 293(C).
    16. Thieu, Cam-Anh & Ji, Ho-Il & Kim, Hyoungchul & Yoon, Kyung Joong & Lee, Jong-Ho & Son, Ji-Won, 2019. "Palladium incorporation at the anode of thin-film solid oxide fuel cells and its effect on direct utilization of butane fuel at 600 °C," Applied Energy, Elsevier, vol. 243(C), pages 155-164.
    17. Liu, Luyao & Duan, Liqiang & Zheng, Nan & Wang, Qiushi & Zhang, Maotong & Xue, Dong, 2024. "Thermodynamic performance evaluation of a novel solar-assisted multi-generation system driven by ammonia-fueled SOFC with anode outlet gas recirculation," Energy, Elsevier, vol. 294(C).
    18. Ke, Yuzhi & Yuan, Wei & Zhou, Feikun & Guo, Wenwen & Li, Jinguang & Zhuang, Ziyi & Su, Xiaoqing & Lu, Biaowu & Zhao, Yonghao & Tang, Yong & Chen, Yu & Song, Jianli, 2021. "A critical review on surface-pattern engineering of nafion membrane for fuel cell applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    19. Zhou, Yu & Chen, Ben & Meng, Kai & Zhou, Haoran & Chen, Wenshang & Zhang, Ning & Deng, Qihao & Yang, Guanghua & Tu, Zhengkai, 2023. "Optimal design of a cathode flow field for performance enhancement of PEM fuel cell," Applied Energy, Elsevier, vol. 343(C).
    20. Jie, Hao & Liao, Jiawei & Zhu, Guozhu & Hong, Weirong, 2024. "Nonlinear model predictive control of direct internal reforming solid oxide fuel cells via PDAE-constrained dynamic optimization," Applied Energy, Elsevier, vol. 360(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:359:y:2024:i:c:s0306261923019736. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.