IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v357y2024ics0306261923019086.html
   My bibliography  Save this article

Customer baseline load estimation for virtual power plants in demand response: An attention mechanism-based generative adversarial networks approach

Author

Listed:
  • Wang, Zhenyi
  • Zhang, Hongcai

Abstract

The virtual power plant (VPP) that aggregates demand-side resources, is a new type of entity to participate in the electricity market and demand response (DR) program. Accurate customer baseline load (CBL) estimation is critical for DR implementation, especially the financial settlement in incentive-based DR. However, this is a challenging task as CBLs cannot be measured and are not equal to actual loads when DR events occur. Moreover, VPPs with different aggregation scales form heterogeneous electricity customers, which increases the difficulty of CBL estimation. In order to address this challenge, this paper proposes a novel deep learning-based CBL estimation method for varied types of electricity customers with different load levels. Specifically, we first transform the CBL estimation problem into a time-series missing data imputation issue, by regarding actual load sequences as CBL sequences with missing data, during DR periods. Then, we propose an attention mechanism-based neural network model to learn load patterns and characteristics of various CBLs, and also create the DR mask to avoid the disturbance of actual loads of DR periods on CBL’s normal pattern. Further, we develop the generative adversarial networks (GAN)-based data imputation framework to produce the corresponding complete CBL sequence according to the actual load sequence, and then recover the missing values accordingly. Finally, comprehensive case studies are conducted based on public datasets, and our proposed method outperforms all benchmarks, where the mean and standard deviation of its estimation percentage error are 5.85% and 1.74%, respectively. This validates the effectiveness and superiority of the proposed method.

Suggested Citation

  • Wang, Zhenyi & Zhang, Hongcai, 2024. "Customer baseline load estimation for virtual power plants in demand response: An attention mechanism-based generative adversarial networks approach," Applied Energy, Elsevier, vol. 357(C).
  • Handle: RePEc:eee:appene:v:357:y:2024:i:c:s0306261923019086
    DOI: 10.1016/j.apenergy.2023.122544
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923019086
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122544?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Kangping & Wang, Fei & Mi, Zengqiang & Fotuhi-Firuzabad, Mahmoud & Duić, Neven & Wang, Tieqiang, 2019. "Capacity and output power estimation approach of individual behind-the-meter distributed photovoltaic system for demand response baseline estimation," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    2. Kong, Xiangyu & Wang, Zhengtao & Liu, Chao & Zhang, Delong & Gao, Hongchao, 2023. "Refined peak shaving potential assessment and differentiated decision-making method for user load in virtual power plants," Applied Energy, Elsevier, vol. 334(C).
    3. Yang, Qing & Wang, Hao & Wang, Taotao & Zhang, Shengli & Wu, Xiaoxiao & Wang, Hui, 2021. "Blockchain-based decentralized energy management platform for residential distributed energy resources in a virtual power plant," Applied Energy, Elsevier, vol. 294(C).
    4. Chen, Yongbao & Xu, Peng & Chu, Yiyi & Li, Weilin & Wu, Yuntao & Ni, Lizhou & Bao, Yi & Wang, Kun, 2017. "Short-term electrical load forecasting using the Support Vector Regression (SVR) model to calculate the demand response baseline for office buildings," Applied Energy, Elsevier, vol. 195(C), pages 659-670.
    5. Lee, Eunjung & Lee, Kyungeun & Lee, Hyoseop & Kim, Euncheol & Rhee, Wonjong, 2019. "Defining virtual control group to improve customer baseline load calculation of residential demand response," Applied Energy, Elsevier, vol. 250(C), pages 946-958.
    6. Gurgel, Angelo & Mignone, Bryan K. & Morris, Jennifer & Kheshgi, Haroon & Mowers, Matthew & Steinberg, Daniel & Herzog, Howard & Paltsev, Sergey, 2023. "Variable renewable energy deployment in low-emission scenarios: The role of technology cost and value," Applied Energy, Elsevier, vol. 344(C).
    7. Ming, Hao & Meng, Jing & Gao, Ciwei & Song, Meng & Chen, Tao & Choi, Dae-Hyun, 2023. "Efficiency improvement of decentralized incentive-based demand response: Social welfare analysis and market mechanism design," Applied Energy, Elsevier, vol. 331(C).
    8. Haider, Haider Tarish & See, Ong Hang & Elmenreich, Wilfried, 2016. "A review of residential demand response of smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 166-178.
    9. Wang, Jianxiao & Zhong, Haiwang & Ma, Ziming & Xia, Qing & Kang, Chongqing, 2017. "Review and prospect of integrated demand response in the multi-energy system," Applied Energy, Elsevier, vol. 202(C), pages 772-782.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meng, Yan & Fan, Shuai & Shen, Yu & Xiao, Jucheng & He, Guangyu & Li, Zuyi, 2023. "Transmission and distribution network-constrained large-scale demand response based on locational customer directrix load for accommodating renewable energy," Applied Energy, Elsevier, vol. 350(C).
    2. Antonopoulos, Ioannis & Robu, Valentin & Couraud, Benoit & Kirli, Desen & Norbu, Sonam & Kiprakis, Aristides & Flynn, David & Elizondo-Gonzalez, Sergio & Wattam, Steve, 2020. "Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    3. Ziras, Charalampos & Heinrich, Carsten & Bindner, Henrik W., 2021. "Why baselines are not suited for local flexibility markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Jieyi Kang & David Reiner, 2021. "Machine Learning on residential electricity consumption: Which households are more responsive to weather?," Working Papers EPRG2113, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    5. Heendeniya, Charitha Buddhika & Sumper, Andreas & Eicker, Ursula, 2020. "The multi-energy system co-planning of nearly zero-energy districts – Status-quo and future research potential," Applied Energy, Elsevier, vol. 267(C).
    6. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N. & Burmester, Daniel, 2021. "Strategic design optimisation of multi-energy-storage-technology micro-grids considering a two-stage game-theoretic market for demand response aggregation," Applied Energy, Elsevier, vol. 287(C).
    7. Keda Pan & Changhong Xie & Chun Sing Lai & Dongxiao Wang & Loi Lei Lai, 2020. "Photovoltaic Output Power Estimation and Baseline Prediction Approach for a Residential Distribution Network with Behind-the-Meter Systems," Forecasting, MDPI, vol. 2(4), pages 1-18, November.
    8. Chen, J.J. & Qi, B.X. & Rong, Z.K. & Peng, K. & Zhao, Y.L. & Zhang, X.H., 2021. "Multi-energy coordinated microgrid scheduling with integrated demand response for flexibility improvement," Energy, Elsevier, vol. 217(C).
    9. Tsoumalis, Georgios I. & Bampos, Zafeirios N. & Biskas, Pandelis N. & Keranidis, Stratos D. & Symeonidis, Polychronis A. & Voulgarakis, Dimitrios K., 2022. "A novel system for providing explicit demand response from domestic natural gas boilers," Applied Energy, Elsevier, vol. 317(C).
    10. Sobhani, Seyed Omid & Sheykhha, Siamak & Madlener, Reinhard, 2020. "An integrated two-level demand-side management game applied to smart energy hubs with storage," Energy, Elsevier, vol. 206(C).
    11. Meng, Yuan & Qiu, Jing & Zhang, Cuo & Lei, Gang & Zhu, Jianguo, 2024. "A Holistic P2P market for active and reactive energy trading in VPPs considering both financial benefits and network constraints," Applied Energy, Elsevier, vol. 356(C).
    12. Yahia, Z. & Pradhan, A., 2018. "Optimal load scheduling of household appliances considering consumer preferences: An experimental analysis," Energy, Elsevier, vol. 163(C), pages 15-26.
    13. Esfahani, Moein & Alizadeh, Ali & Amjady, Nima & Kamwa, Innocent, 2024. "A distributed VPP-integrated co-optimization framework for energy scheduling, frequency regulation, and voltage support using data-driven distributionally robust optimization with Wasserstein metric," Applied Energy, Elsevier, vol. 361(C).
    14. Otashu, Joannah I. & Baldea, Michael, 2020. "Scheduling chemical processes for frequency regulation," Applied Energy, Elsevier, vol. 260(C).
    15. Kong, Xiangyu & Wang, Zhengtao & Liu, Chao & Zhang, Delong & Gao, Hongchao, 2023. "Refined peak shaving potential assessment and differentiated decision-making method for user load in virtual power plants," Applied Energy, Elsevier, vol. 334(C).
    16. Jordehi, A. Rezaee, 2019. "Optimisation of demand response in electric power systems, a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 308-319.
    17. Chen, Yongbao & Chen, Zhe & Xu, Peng & Li, Weilin & Sha, Huajing & Yang, Zhiwei & Li, Guowen & Hu, Chonghe, 2019. "Quantification of electricity flexibility in demand response: Office building case study," Energy, Elsevier, vol. 188(C).
    18. Vallianos, Charalampos & Candanedo, José & Athienitis, Andreas, 2023. "Application of a large smart thermostat dataset for model calibration and Model Predictive Control implementation in the residential sector," Energy, Elsevier, vol. 278(PA).
    19. Fredrik Skaug Fadnes & Reyhaneh Banihabib & Mohsen Assadi, 2023. "Using Artificial Neural Networks to Gather Intelligence on a Fully Operational Heat Pump System in an Existing Building Cluster," Energies, MDPI, vol. 16(9), pages 1-33, May.
    20. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:357:y:2024:i:c:s0306261923019086. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.