IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v356y2024ics0306261923017233.html
   My bibliography  Save this article

From buildings to cities: How household demographics shape demand response and energy consumption

Author

Listed:
  • Osman, Mohamed
  • Saad, Mostafa M.
  • Ouf, Mohamed
  • Eicker, Ursula

Abstract

In the face of rapidly evolving energy landscapes, driven by increasing integration of renewable energy and the transition towards a more sustainable grid, the role of demand response (DR) programs in maintaining grid stability and efficiency has become increasingly critical. This study presents an in-depth methodology for assessing the nexus between household demographics and engagement in demand response (DR) programs, investigating their impact on energy consumption and financial outcomes at both building and urban scales. Six household archetypes are defined: single working individual, single retired individual, working couple, retired couple, nuclear family, and lone parent household. Additionally, three energy-use archetypes— austere, average, and wasteful—are considered. Employing a stochastic load profile generator, the study examined variables like annual occupancy hours, thermal energy needs, and appliance consumption. In a Canadian residential context, a shift from a single working adult to a nuclear family occupant archetype led to an increase in annual occupancy by 24%, causing a 21% fluctuation in Energy Use Intensity (EUI). Additionally, diverse consumption behaviors led to a 41% EUI variance. The study evaluated load curtailment capabilities across various household archetypes; notably, a ‘wasteful’ household could reduce their load by 32% through a 2 °C-thermostat adjustment during DR events, and this rose to 54% with pre-heating. At the urban scale, demographic shifts substantially influence load profiles and cause variable peak load times. Areas with more retirees have higher mid-day energy usage. The research quantified DR benefits in load reduction and fiscal gains. By raising DR participation from 10% to 50%, load curtailment grew by 69% in areas with younger families. Pre-heating further enhanced load curtailment by 12% and reduced energy rebound by 4%. Economically, ‘wasteful’ households could accumulate 11% more credits compared to average homes. This research introduced a flexible framework for incorporating household demographics and energy use behavior into DR studies, which can be adapted and re-applied to different case studies based on the availability of relevant data.

Suggested Citation

  • Osman, Mohamed & Saad, Mostafa M. & Ouf, Mohamed & Eicker, Ursula, 2024. "From buildings to cities: How household demographics shape demand response and energy consumption," Applied Energy, Elsevier, vol. 356(C).
  • Handle: RePEc:eee:appene:v:356:y:2024:i:c:s0306261923017233
    DOI: 10.1016/j.apenergy.2023.122359
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923017233
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122359?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ang, Yu Qian & Berzolla, Zachary Michael & Reinhart, Christoph F., 2020. "From concept to application: A review of use cases in urban building energy modeling," Applied Energy, Elsevier, vol. 279(C).
    2. Razmara, M. & Bharati, G.R. & Hanover, Drew & Shahbakhti, M. & Paudyal, S. & Robinett, R.D., 2017. "Building-to-grid predictive power flow control for demand response and demand flexibility programs," Applied Energy, Elsevier, vol. 203(C), pages 128-141.
    3. Fischer, David & Harbrecht, Alexander & Surmann, Arne & McKenna, Russell, 2019. "Electric vehicles’ impacts on residential electric local profiles – A stochastic modelling approach considering socio-economic, behavioural and spatial factors," Applied Energy, Elsevier, vol. 233, pages 644-658.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marek Walacik & Aneta Chmielewska, 2024. "Energy Performance in Residential Buildings as a Property Market Efficiency Driver," Energies, MDPI, vol. 17(10), pages 1-18, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yongbao & Chen, Zhe & Xu, Peng & Li, Weilin & Sha, Huajing & Yang, Zhiwei & Li, Guowen & Hu, Chonghe, 2019. "Quantification of electricity flexibility in demand response: Office building case study," Energy, Elsevier, vol. 188(C).
    2. Shan, Kui & Wang, Shengwei & Zhuang, Chaoqun, 2021. "Controlling a large constant speed centrifugal chiller to provide grid frequency regulation: A validation based on onsite tests," Applied Energy, Elsevier, vol. 300(C).
    3. Johari, F. & Lindberg, O. & Ramadhani, U.H. & Shadram, F. & Munkhammar, J. & Widén, J., 2024. "Analysis of large-scale energy retrofit of residential buildings and their impact on the electricity grid using a validated UBEM," Applied Energy, Elsevier, vol. 361(C).
    4. Julia Vopava & Christian Koczwara & Anna Traupmann & Thomas Kienberger, 2019. "Investigating the Impact of E-Mobility on the Electrical Power Grid Using a Simplified Grid Modelling Approach," Energies, MDPI, vol. 13(1), pages 1-23, December.
    5. Yamaguchi, Yohei & Shoda, Yuto & Yoshizawa, Shinya & Imai, Tatsuya & Perwez, Usama & Shimoda, Yoshiyuki & Hayashi, Yasuhiro, 2023. "Feasibility assessment of net zero-energy transformation of building stock using integrated synthetic population, building stock, and power distribution network framework," Applied Energy, Elsevier, vol. 333(C).
    6. Capone, Martina & Guelpa, Elisa & Verda, Vittorio, 2021. "Multi-objective optimization of district energy systems with demand response," Energy, Elsevier, vol. 227(C).
    7. Muhammad Naveed Iqbal & Lauri Kütt & Matti Lehtonen & Robert John Millar & Verner Püvi & Anton Rassõlkin & Galina L. Demidova, 2021. "Travel Activity Based Stochastic Modelling of Load and Charging State of Electric Vehicles," Sustainability, MDPI, vol. 13(3), pages 1-14, February.
    8. Sivaneasan, Balakrishnan & Kandasamy, Nandha Kumar & Lim, May Lin & Goh, Kwang Ping, 2018. "A new demand response algorithm for solar PV intermittency management," Applied Energy, Elsevier, vol. 218(C), pages 36-45.
    9. Joshua M. Pearce & Nelson Sommerfeldt, 2021. "Economics of Grid-Tied Solar Photovoltaic Systems Coupled to Heat Pumps: The Case of Northern Climates of the U.S. and Canada," Energies, MDPI, vol. 14(4), pages 1-17, February.
    10. Monika Topel & Josefine Grundius, 2020. "Load Management Strategies to Increase Electric Vehicle Penetration—Case Study on a Local Distribution Network in Stockholm," Energies, MDPI, vol. 13(18), pages 1-16, September.
    11. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    12. Battini, Federico & Pernigotto, Giovanni & Gasparella, Andrea, 2023. "District-level validation of a shoeboxing simplification algorithm to speed-up Urban Building Energy Modeling simulations," Applied Energy, Elsevier, vol. 349(C).
    13. Li, Yanfei & O'Neill, Zheng & Zhang, Liang & Chen, Jianli & Im, Piljae & DeGraw, Jason, 2021. "Grey-box modeling and application for building energy simulations - A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    14. Yan, Jie & Zhang, Jing & Liu, Yongqian & Lv, Guoliang & Han, Shuang & Alfonzo, Ian Emmanuel Gonzalez, 2020. "EV charging load simulation and forecasting considering traffic jam and weather to support the integration of renewables and EVs," Renewable Energy, Elsevier, vol. 159(C), pages 623-641.
    15. Rafael Campamà Pizarro & Ricardo Bernardo & Maria Wall, 2023. "Streamlining Building Energy Modelling Using Open Access Databases—A Methodology towards Decarbonisation of Residential Buildings in Sweden," Sustainability, MDPI, vol. 15(5), pages 1-17, February.
    16. Li, Han & Johra, Hicham & de Andrade Pereira, Flavia & Hong, Tianzhen & Le Dréau, Jérôme & Maturo, Anthony & Wei, Mingjun & Liu, Yapan & Saberi-Derakhtenjani, Ali & Nagy, Zoltan & Marszal-Pomianowska,, 2023. "Data-driven key performance indicators and datasets for building energy flexibility: A review and perspectives," Applied Energy, Elsevier, vol. 343(C).
    17. Ma, Zheng & Knotzer, Armin & Billanes, Joy Dalmacio & Jørgensen, Bo Nørregaard, 2020. "A literature review of energy flexibility in district heating with a survey of the stakeholders’ participation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    18. Doluweera, Ganesh & Hahn, Fabian & Bergerson, Joule & Pruckner, Marco, 2020. "A scenario-based study on the impacts of electric vehicles on energy consumption and sustainability in Alberta," Applied Energy, Elsevier, vol. 268(C).
    19. Buonomano, Annamaria, 2020. "Building to Vehicle to Building concept: A comprehensive parametric and sensitivity analysis for decision making aims," Applied Energy, Elsevier, vol. 261(C).
    20. Zhao, Yongliang & Wang, Chaoyang & Liu, Ming & Chong, Daotong & Yan, Junjie, 2018. "Improving operational flexibility by regulating extraction steam of high-pressure heaters on a 660 MW supercritical coal-fired power plant: A dynamic simulation," Applied Energy, Elsevier, vol. 212(C), pages 1295-1309.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:356:y:2024:i:c:s0306261923017233. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.