Large-scale all-climate vanadium batteries
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2023.122324
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Liuyue Cao & Anders Kronander & Ao Tang & Da-Wei Wang & Maria Skyllas-Kazacos, 2016. "Membrane Permeability Rates of Vanadium Ions and Their Effects on Temperature Variation in Vanadium Redox Batteries," Energies, MDPI, vol. 9(12), pages 1-15, December.
- Jens Noack & Lars Wietschel & Nataliya Roznyatovskaya & Karsten Pinkwart & Jens Tübke, 2016. "Techno-Economic Modeling and Analysis of Redox Flow Battery Systems," Energies, MDPI, vol. 9(8), pages 1-15, August.
- Li, Xiangrong & Xiong, Jing & Tang, Ao & Qin, Ye & Liu, Jianguo & Yan, Chuanwei, 2018. "Investigation of the use of electrolyte viscosity for online state-of-charge monitoring design in vanadium redox flow battery," Applied Energy, Elsevier, vol. 211(C), pages 1050-1059.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Alejandro Clemente & Ramon Costa-Castelló, 2020. "Redox Flow Batteries: A Literature Review Oriented to Automatic Control," Energies, MDPI, vol. 13(17), pages 1-31, September.
- Shujuan Meng & Binyu Xiong & Tuti Mariana Lim, 2019. "Model-Based Condition Monitoring of a Vanadium Redox Flow Battery," Energies, MDPI, vol. 12(15), pages 1-16, August.
- Sun, Jie & Zheng, Menglian & Yang, Zhongshu & Yu, Zitao, 2019. "Flow field design pathways from lab-scale toward large-scale flow batteries," Energy, Elsevier, vol. 173(C), pages 637-646.
- Wang, Shaoliang & Xu, Zeyu & Wu, Xiaoliang & Zhao, Huan & Zhao, Jinling & Liu, Jianguo & Yan, Chuanwei & Fan, Xinzhuang, 2020. "Analyses and optimization of electrolyte concentration on the electrochemical performance of iron-chromium flow battery," Applied Energy, Elsevier, vol. 271(C).
- Ivan Kuzmin & Alexey Loskutov & Evgeny Osetrov & Andrey Kurkin, 2022. "Source for Autonomous Power Supply System Based on Flow Battery," Energies, MDPI, vol. 15(9), pages 1-15, April.
- Eapen, Deepa Elizabeth & Suresh, Resmi & Patil, Sairaj & Rengaswamy, Raghunathan, 2021. "A systems engineering perspective on electrochemical energy technologies and a framework for application driven choice of technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
- Yue, Meng & Lv, Zhiqiang & Zheng, Qiong & Li, Xianfeng & Zhang, Huamin, 2019. "Battery assembly optimization: Tailoring the electrode compression ratio based on the polarization analysis in vanadium flow batteries," Applied Energy, Elsevier, vol. 235(C), pages 495-508.
- Henni, Sarah & Schäffer, Michael & Fischer, Peter & Weinhardt, Christof & Staudt, Philipp, 2023. "Bottom-up system modeling of battery storage requirements for integrated renewable energy systems," Applied Energy, Elsevier, vol. 333(C).
- Zhiquan Wei & Zhaodong Huang & Guojin Liang & Yiqiao Wang & Shixun Wang & Yihan Yang & Tao Hu & Chunyi Zhi, 2024. "Starch-mediated colloidal chemistry for highly reversible zinc-based polyiodide redox flow batteries," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Liu, Yongbin & Yu, Lihong & Liu, Le & Xi, Jingyu, 2021. "Tailoring the vanadium/proton ratio of electrolytes to boost efficiency and stability of vanadium flow batteries over a wide temperature range," Applied Energy, Elsevier, vol. 301(C).
- Linda Barelli & Gianni Bidini & Paolo Cherubini & Andrea Micangeli & Dario Pelosi & Carlo Tacconelli, 2019. "How Hybridization of Energy Storage Technologies Can Provide Additional Flexibility and Competitiveness to Microgrids in the Context of Developing Countries," Energies, MDPI, vol. 12(16), pages 1-22, August.
- Kendall Mongird & Vilayanur Viswanathan & Patrick Balducci & Jan Alam & Vanshika Fotedar & Vladimir Koritarov & Boualem Hadjerioua, 2020. "An Evaluation of Energy Storage Cost and Performance Characteristics," Energies, MDPI, vol. 13(13), pages 1-53, June.
- Hina Fathima A & Kaliannan Palanisamy & Sanjeevikumar Padmanaban & Umashankar Subramaniam, 2018. "Intelligence-Based Battery Management and Economic Analysis of an Optimized Dual-Vanadium Redox Battery (VRB) for a Wind-PV Hybrid System," Energies, MDPI, vol. 11(10), pages 1-18, October.
- Kim, Jungmyung & Park, Heesung, 2018. "Impact of nanofluidic electrolyte on the energy storage capacity in vanadium redox flow battery," Energy, Elsevier, vol. 160(C), pages 192-199.
- Pugach, M. & Kondratenko, M. & Briola, S. & Bischi, A., 2018. "Zero dimensional dynamic model of vanadium redox flow battery cell incorporating all modes of vanadium ions crossover," Applied Energy, Elsevier, vol. 226(C), pages 560-569.
- Quan Xu & Xinyi Chen & Siyang Wang & Chao Guo & Yingchun Niu & Runguo Zuo & Ziji Yang & Yang Zhou & Chunming Xu, 2022. "The Recycling of Waste Per-Fluorinated Sulfonic Acid for Reformulation and Membrane Application in Iron-Chromium Redox Flow Batteries," Energies, MDPI, vol. 15(22), pages 1-10, November.
- Julian Marius Müller & Raphael Kunderer, 2019. "Ex-Ante Prediction of Disruptive Innovation: The Case of Battery Technologies," Sustainability, MDPI, vol. 11(19), pages 1-19, September.
- Zhang, Yunong & Liu, Le & Xi, Jingyu & Wu, Zenghua & Qiu, Xinping, 2017. "The benefits and limitations of electrolyte mixing in vanadium flow batteries," Applied Energy, Elsevier, vol. 204(C), pages 373-381.
- Bhattacharjee, Ankur & Saha, Hiranmay, 2018. "Development of an efficient thermal management system for Vanadium Redox Flow Battery under different charge-discharge conditions," Applied Energy, Elsevier, vol. 230(C), pages 1182-1192.
- Cremoncini, Diana & Di Lorenzo, Giuseppina & Frate, Guido Francesco & Bischi, Aldo & Baccioli, Andrea & Ferrari, Lorenzo, 2024. "Techno-economic analysis of Aqueous Organic Redox Flow Batteries: Stochastic investigation of capital cost and levelized cost of storage," Applied Energy, Elsevier, vol. 360(C).
More about this item
Keywords
Thermal management; Large-scale batteries; Vanadium;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:355:y:2024:i:c:s0306261923016884. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.