IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v353y2024ipas030626192301471x.html
   My bibliography  Save this article

Blockchain-enabled peer-to-peer energy trading and resilient control of microgrids

Author

Listed:
  • Veerasamy, Veerapandiyan
  • Hu, Zhijian
  • Qiu, Haifeng
  • Murshid, Shadab
  • Gooi, Hoay Beng
  • Nguyen, Hung Dinh

Abstract

The deregulation and decentralization of the energy market have resulted in a proliferation of distributed generation that participates in energy trading as prosumers. In peer-to-peer (P2P) trading of energy within the microgrid (MG), the peers can trade energy without the need for an intermediary. Blockchain technology is devised to assure the security and resilience of the system's P2P trading against adversarial attacks. The large number of renewable prosumers who participate in trading raises the MG system's oscillation frequency. To regulate the system frequency during trading, a distributed-based federated learned fractional-order recurrent neural network (FL-FORNN) adaptive controller is proposed. The control system is a crucial component of MGs in order to ensure stable performance. To aggregate the network weights, the proposed FL-based controller frequently communicates with the cloud server. To avoid the privacy threat during this case, we further propose to integrate FL with local differential privacy (LDP) to secure against the false data injection attack from the eavesdropper. To validate, the MG model is implemented in OPAL-RT with its resilient controller. The P2P trading of energy in the blockchain is executed in Raspberry Pis (RPis) based on the numerous prosumers/consumers participating in the trading. Then, the power information from the tertiary control implemented in RPis is communicated with the MG secondary frequency controller by interfacing using the user datagram protocol. The proposed work is realized for the MG considering four prosumers and three consumers, and the resiliency of the controller is authenticated with case studies. The results divulge that the LDP of the proposed controller can provide a robust and secure solution of MGs with P2P trading, even in the presence of adversarial attacks.

Suggested Citation

  • Veerasamy, Veerapandiyan & Hu, Zhijian & Qiu, Haifeng & Murshid, Shadab & Gooi, Hoay Beng & Nguyen, Hung Dinh, 2024. "Blockchain-enabled peer-to-peer energy trading and resilient control of microgrids," Applied Energy, Elsevier, vol. 353(PA).
  • Handle: RePEc:eee:appene:v:353:y:2024:i:pa:s030626192301471x
    DOI: 10.1016/j.apenergy.2023.122107
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192301471X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122107?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zuñiga Aguilar, C.J. & Gómez-Aguilar, J.F. & Alvarado-Martínez, V.M. & Romero-Ugalde, H.M., 2020. "Fractional order neural networks for system identification," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    2. Oshnoei, Soroush & Aghamohammadi, Mohammad Reza & Oshnoei, Siavash & Sahoo, Subham & Fathollahi, Arman & Khooban, Mohammad Hasan, 2023. "A novel virtual inertia control strategy for frequency regulation of islanded microgrid using two-layer multiple model predictive control," Applied Energy, Elsevier, vol. 343(C).
    3. Wang, Beibei & Xu, Lun & Wang, Jialei, 2023. "A privacy-preserving trading strategy for blockchain-based P2P electricity transactions," Applied Energy, Elsevier, vol. 335(C).
    4. Roth, Tamara & Utz, Manuel & Baumgarte, Felix & Rieger, Alexander & Sedlmeir, Johannes & Strüker, Jens, 2022. "Electricity powered by blockchain: A review with a European perspective," Applied Energy, Elsevier, vol. 325(C).
    5. Huang, Z.F. & Soh, K.Y. & Islam, M.R. & Chua, K.J., 2023. "Development of a novel grid-free district cooling system considering blockchain-based demand response management," Applied Energy, Elsevier, vol. 342(C).
    6. Hu, Qian & Zhu, Ziqing & Bu, Siqi & Wing Chan, Ka & Li, Fangxing, 2021. "A multi-market nanogrid P2P energy and ancillary service trading paradigm: Mechanisms and implementations," Applied Energy, Elsevier, vol. 293(C).
    7. Khokhar, Bhuvnesh & Parmar, K. P. Singh, 2022. "A novel adaptive intelligent MPC scheme for frequency stabilization of a microgrid considering SoC control of EVs," Applied Energy, Elsevier, vol. 309(C).
    8. Wang, Dongxiao & Qiu, Jing & Reedman, Luke & Meng, Ke & Lai, Loi Lei, 2018. "Two-stage energy management for networked microgrids with high renewable penetration," Applied Energy, Elsevier, vol. 226(C), pages 39-48.
    9. Fernández, Joaquín Delgado & Menci, Sergio Potenciano & Lee, Chul Min & Rieger, Alexander & Fridgen, Gilbert, 2022. "Privacy-preserving federated learning for residential short-term load forecasting," Applied Energy, Elsevier, vol. 326(C).
    10. Yang, Jiawei & Paudel, Amrit & Gooi, Hoay Beng & Nguyen, Hung Dinh, 2021. "A Proof-of-Stake public blockchain based pricing scheme for peer-to-peer energy trading," Applied Energy, Elsevier, vol. 298(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marianna Lezzi & Vito Del Vecchio & Mariangela Lazoi, 2024. "Using Blockchain Technology for Sustainability and Secure Data Management in the Energy Industry: Implications and Future Research Directions," Sustainability, MDPI, vol. 16(18), pages 1-22, September.
    2. Federico Córdova-González & Eduardo García Meléndez & Montserrat Ferrer Juliá & Daniel Icaza, 2024. "Analysis for the Implementation of Distributed Renewable Energy Generation Systems for Areas of High Vulnerability Due to Hillside Movements: Case Study of Marianza-Cuenca, Ecuador," Energies, MDPI, vol. 17(7), pages 1-30, March.
    3. Caixiang Fan & Hamzeh Khazaei & Petr Musilek, 2024. "BPET: A Unified Blockchain-Based Framework for Peer-to-Peer Energy Trading," Future Internet, MDPI, vol. 16(5), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kandasamy, Jeevitha & Ramachandran, Rajeswari & Veerasamy, Veerapandiyan & Irudayaraj, Andrew Xavier Raj, 2024. "Distributed leader-follower based adaptive consensus control for networked microgrids," Applied Energy, Elsevier, vol. 353(PA).
    2. Mehmood, Ammara & Raja, Muhammad Asif Zahoor & Ninness, Brett, 2024. "Design of fractional-order hammerstein control auto-regressive model for heat exchanger system identification: Treatise on fuzzy-evolutionary computing," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    3. Hua Pan & Huimin Zhu & Minmin Teng, 2023. "Low-Carbon Transformation Strategy for Blockchain-Based Power Supply Chain," Sustainability, MDPI, vol. 15(16), pages 1-22, August.
    4. Mansour-Saatloo, Amin & Pezhmani, Yasin & Mirzaei, Mohammad Amin & Mohammadi-Ivatloo, Behnam & Zare, Kazem & Marzband, Mousa & Anvari-Moghaddam, Amjad, 2021. "Robust decentralized optimization of Multi-Microgrids integrated with Power-to-X technologies," Applied Energy, Elsevier, vol. 304(C).
    5. Soria, Jorge & Moya, Jorge & Mohazab, Amin, 2023. "Optimal mining in proof-of-work blockchain protocols," Finance Research Letters, Elsevier, vol. 53(C).
    6. Li, Qiang & Gao, Mengkai & Lin, Houfei & Chen, Ziyu & Chen, Minyou, 2019. "MAS-based distributed control method for multi-microgrids with high-penetration renewable energy," Energy, Elsevier, vol. 171(C), pages 284-295.
    7. Constantino Dário Justo & José Eduardo Tafula & Pedro Moura, 2022. "Planning Sustainable Energy Systems in the Southern African Development Community: A Review of Power Systems Planning Approaches," Energies, MDPI, vol. 15(21), pages 1-28, October.
    8. Àlex Alonso & Jordi de la Hoz & Helena Martín & Sergio Coronas & Pep Salas & José Matas, 2020. "A Comprehensive Model for the Design of a Microgrid under Regulatory Constraints Using Synthetical Data Generation and Stochastic Optimization," Energies, MDPI, vol. 13(21), pages 1-26, October.
    9. Chen, Bingyang & Zeng, Xingjie & Zhang, Weishan & Fan, Lulu & Cao, Shaohua & Zhou, Jiehan, 2023. "Knowledge sharing-based multi-block federated learning for few-shot oil layer identification," Energy, Elsevier, vol. 283(C).
    10. Mehmood, Ammara & Raja, Muhammad Asif Zahoor, 2022. "Fuzzy-weighted differential evolution computing paradigm for fractional order nonlinear wiener systems," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    11. Ádám Sleisz & Dániel Divényi & Beáta Polgári & Péter Sőrés & Dávid Raisz, 2022. "A Novel Cost Allocation Mechanism for Local Flexibility in the Power System with Partial Disintermediation," Energies, MDPI, vol. 15(22), pages 1-18, November.
    12. Oshnoei, Soroush & Aghamohammadi, Mohammad Reza & Oshnoei, Siavash & Sahoo, Subham & Fathollahi, Arman & Khooban, Mohammad Hasan, 2023. "A novel virtual inertia control strategy for frequency regulation of islanded microgrid using two-layer multiple model predictive control," Applied Energy, Elsevier, vol. 343(C).
    13. Jani, Ali & Jadid, Shahram, 2023. "Two-stage energy scheduling framework for multi-microgrid system in market environment," Applied Energy, Elsevier, vol. 336(C).
    14. Marcel Antal & Vlad Mihailescu & Tudor Cioara & Ionut Anghel, 2022. "Blockchain-Based Distributed Federated Learning in Smart Grid," Mathematics, MDPI, vol. 10(23), pages 1-19, November.
    15. Zhu, Ziqing & Hu, Ze & Chan, Ka Wing & Bu, Siqi & Zhou, Bin & Xia, Shiwei, 2023. "Reinforcement learning in deregulated energy market: A comprehensive review," Applied Energy, Elsevier, vol. 329(C).
    16. Abate, Arega Getaneh & Riccardi, Rossana & Ruiz, Carlos, 2022. "Contract design in electricity markets with high penetration of renewables: A two-stage approach," Omega, Elsevier, vol. 111(C).
    17. Hossein Shayeghi & Elnaz Shahryari & Mohammad Moradzadeh & Pierluigi Siano, 2019. "A Survey on Microgrid Energy Management Considering Flexible Energy Sources," Energies, MDPI, vol. 12(11), pages 1-26, June.
    18. Tarashandeh, Nader & Karimi, Ali, 2024. "Peer-to-peer energy trading under distribution network constraints with preserving independent nature of agents," Applied Energy, Elsevier, vol. 355(C).
    19. Wenhao Zhuo & Andrey V. Savkin, 2019. "Profit Maximizing Control of a Microgrid with Renewable Generation and BESS Based on a Battery Cycle Life Model and Energy Price Forecasting," Energies, MDPI, vol. 12(15), pages 1-17, July.
    20. Liu, Junhong & Long, Qinfei & Liu, Rong-Peng & Liu, Wenjie & Hou, Yunhe, 2023. "Online distributed optimization for spatio-temporally constrained real-time peer-to-peer energy trading," Applied Energy, Elsevier, vol. 331(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:353:y:2024:i:pa:s030626192301471x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.