IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v352y2023ics0306261923013302.html
   My bibliography  Save this article

Novel strategy for reducing the minimum miscible pressure in a CO2–oil system using nonionic surfactant: Insights from molecular dynamics simulations

Author

Listed:
  • Wang, Zhoujie
  • Zhu, Jianzhong
  • Li, Songyan

Abstract

Effective CO2-oil miscibility is a vital factor in optimizing oil production during CO2 flooding and enhancing CO2 storage capacity. This research investigates the impact of various surfactants, temperatures, and pressures on CO2-oil interfacial tension (IFT) through experimental measurements. It also evaluates the reduction in minimum miscible pressure (MMP). Subsequently, molecular dynamics (MD) simulations analyze gas-liquid miscibility, focusing on relative concentration, interaction energy, radial distribution function (RDF), and miscibility degree (Dmix). Results indicate that introducing a compound nonionic surfactant SF significantly reduces IFT and MMP, achieving an impressive 19.59% MMP reduction. Moreover, SF inclusion boosts Dmix by 8.57%, reflecting enhanced miscibility. The highest absolute value of average interaction energy (EInter) is observed, primarily driven by van der Waals interactions. SF's augmented CO2 coordination number contributes to improved Dmix and reduced MMP. SF's nonpolar groups react with CO2, reducing asymmetric forces between phases and lowering IFT. Electronegative fluorine atoms in SF interact with electron-deficient carbon atoms in CO2, heightening CO2 solubility. Elevated system pressure or reduced temperature amplifies EInter, the coordination number, and subsequently enhances Dmix. Experimentally measured MMP results closely align with MD simulations, with an average relative error of 4.63%. This study elucidates CO2-oil miscibility mechanisms on experimental and molecular scales, offering a promising avenue for future CO2 flooding research.

Suggested Citation

  • Wang, Zhoujie & Zhu, Jianzhong & Li, Songyan, 2023. "Novel strategy for reducing the minimum miscible pressure in a CO2–oil system using nonionic surfactant: Insights from molecular dynamics simulations," Applied Energy, Elsevier, vol. 352(C).
  • Handle: RePEc:eee:appene:v:352:y:2023:i:c:s0306261923013302
    DOI: 10.1016/j.apenergy.2023.121966
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923013302
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121966?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Yuejun & Fan, Guangjuan & Song, Kaoping & Li, Yilin & Chen, Hao & Sun, He, 2021. "The experimental research for reducing the minimum miscibility pressure of carbon dioxide miscible flooding," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    2. Chen, Hao & Wang, Yu & Zuo, Mingsheng & Zhang, Chao & Jia, Ninghong & Liu, Xiliang & Yang, Shenglai, 2022. "A new prediction model of CO2 diffusion coefficient in crude oil under reservoir conditions based on BP neural network," Energy, Elsevier, vol. 239(PC).
    3. Asif, M. & Muneer, T., 2007. "Energy supply, its demand and security issues for developed and emerging economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(7), pages 1388-1413, September.
    4. Yanting Sun & Yanbin Li & Feng Zhang & Chang Liu, 2022. "Obstacle Identification and Analysis to the Commercialization of CCUS Technology in China under the Carbon Neutrality Target," Energies, MDPI, vol. 15(11), pages 1-25, May.
    5. Chen, Siyuan & Liu, Jiangfeng & Zhang, Qi & Teng, Fei & McLellan, Benjamin C., 2022. "A critical review on deployment planning and risk analysis of carbon capture, utilization, and storage (CCUS) toward carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    6. Felder Stefan & Rutherford Thomas F., 1993. "Unilateral CO2 Reductions and Carbon Leakage: The Consequences of International Trade in Oil and Basic Materials," Journal of Environmental Economics and Management, Elsevier, vol. 25(2), pages 162-176, September.
    7. Chen, Hao & Liu, Xiliang & Zhang, Chao & Tan, Xianhong & Yang, Ran & Yang, Shenglai & Yang, Jin, 2022. "Effects of miscible degree and pore scale on seepage characteristics of unconventional reservoirs fluids due to supercritical CO2 injection," Energy, Elsevier, vol. 239(PC).
    8. Xiaolong, Chen & Yiqiang, Li & Xiang, Tang & Huan, Qi & Xuebing, Sun & Jianghao, Luo, 2021. "Effect of gravity segregation on CO2 flooding under various pressure conditions: Application to CO2 sequestration and oil production," Energy, Elsevier, vol. 226(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Svetlana Vladislavlevna Lobova & Aleksei Valentinovich Bogoviz & Yulia Vyacheslavovna Ragulina & Alexander Nikolaevich Alekseev, 2019. "The Fuel and Energy Complex of Russia: Analyzing Energy Efficiency Policies at the Federal Level," International Journal of Energy Economics and Policy, Econjournals, vol. 9(1), pages 205-211.
    2. Li, Aijun & Du, Nan & Wei, Qian, 2014. "The cross-country implications of alternative climate policies," Energy Policy, Elsevier, vol. 72(C), pages 155-163.
    3. Böhringer, Christoph & Garcia-Muros, Xaquin & Gonzalez-Eguino, Mikel & Rey, Luis, 2017. "US climate policy: A critical assessment of intensity standards," Energy Economics, Elsevier, vol. 68(S1), pages 125-135.
    4. Taran Loper & Victoria L. Crittenden, 2017. "Energy Security: Shaping The Consumer Decision Making Process In Emerging Economies," Organizations and Markets in Emerging Economies, Faculty of Economics, Vilnius University, vol. 8(1).
    5. Hong, Yanran & Cao, Shijiao & Xu, Pengfei & Pan, Zhigang, 2024. "Interpreting the effect of global economic risks on crude oil market: A supply-demand perspective," International Review of Financial Analysis, Elsevier, vol. 91(C).
    6. Abolhosseini, Shahrouz & Heshmati, Almas & Altmann, Jörn, 2014. "A Review of Renewable Energy Supply and Energy Efficiency Technologies," IZA Discussion Papers 8145, Institute of Labor Economics (IZA).
    7. Böhringer, Christoph & Fischer, Carolyn & Rosendahl, Knut Einar, 2014. "Cost-effective unilateral climate policy design: Size matters," Journal of Environmental Economics and Management, Elsevier, vol. 67(3), pages 318-339.
    8. Christoph Böhringer & André Müller & Jan Schneider, 2015. "Carbon Tariffs Revisited," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(4), pages 629-672.
    9. Gabriela Michalek & Reimund Schwarze, 2015. "Carbon leakage: pollution, trade or politics?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 17(6), pages 1471-1492, December.
    10. repec:old:wpaper:339 is not listed on IDEAS
    11. Reyer Gerlagh, Nicole A. Mathys and Thomas O. Michielsen, 2015. "Energy Abundance, Trade and Specialization," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    12. Yuan, Mei-Hua & Lo, Shang-Lien, 2020. "Developing indicators for the monitoring of the sustainability of food, energy, and water," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    13. Aleksei Valentinovich Bogoviz & Svetlana Vladislavlevna Lobova & Yulia Vyacheslavovna Ragulina & Alexander Nikolaevich Alekseev, 2018. "Russia s Energy Security Doctrine: Addressing Emerging Challenges and Opportunities," International Journal of Energy Economics and Policy, Econjournals, vol. 8(5), pages 1-6.
    14. repec:zbw:hohpro:338 is not listed on IDEAS
    15. Huang, Beijia & Zhang, Long & Ma, Linmao & Bai, Wuliyasu & Ren, Jingzheng, 2021. "Multi-criteria decision analysis of China’s energy security from 2008 to 2017 based on Fuzzy BWM-DEA-AR model and Malmquist Productivity Index," Energy, Elsevier, vol. 228(C).
    16. Tan, Qinliang & Han, Jian & Liu, Yuan, 2023. "Examining the synergistic diffusion process of carbon capture and renewable energy generation technologies under market environment: A multi-agent simulation analysis," Energy, Elsevier, vol. 282(C).
    17. Gilbert E. Metcalf & David Weisbach, 2012. "Linking Policies When Tastes Differ: Global Climate Policy in a Heterogeneous World," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 6(1), pages 110-129.
    18. Cormos, Calin-Cristian, 2023. "Green hydrogen production from decarbonized biomass gasification: An integrated techno-economic and environmental analysis," Energy, Elsevier, vol. 270(C).
    19. Christoph Böhringer & Knut Einar Rosendahl & Halvor Storrøsten, 2021. "Smart hedging against carbon leakage [An overview of the GTAP 9 data base]," Economic Policy, CEPR, CESifo, Sciences Po;CES;MSH, vol. 36(107), pages 439-484.
    20. Alrubaih, M.S. & Zain, M.F.M. & Alghoul, M.A. & Ibrahim, N.L.N. & Shameri, M.A. & Elayeb, Omkalthum, 2013. "Research and development on aspects of daylighting fundamentals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 494-505.
    21. Vogt, Angelika & Hagen, Achim & Eisenack, Klaus, 2020. "Buy coal, cap gas! Markets for fossil fuel deposits when fuel emission intensities differ," Working Paper Series 304708, Humboldt University Berlin, Department of Agricultural Economics.
    22. repec:old:wpaper:340 is not listed on IDEAS
    23. Luyang Tang & Bangke Lu & Tianhai Tian, 2023. "The Effect of Input Digitalization on Carbon Emission Intensity: An Empirical Analysis Based on China’s Manufacturing," IJERPH, MDPI, vol. 20(4), pages 1-22, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:352:y:2023:i:c:s0306261923013302. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.