IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v349y2023ics0306261923009856.html
   My bibliography  Save this article

Determination of half-cell open-circuit potential curve of silicon-graphite in a physics-based model for lithium-ion batteries

Author

Listed:
  • Gao, Yizhao
  • Sun, Ziqiang
  • Zhang, Dong
  • Shi, Dapai
  • Zhang, Xi

Abstract

Lithium-ion batteries with silicon/graphite anodes have the potential to deliver high theoretical capacity. However, these electrodes exhibit significant hysteresis, which presents challenges in accurately estimating the open-circuit potentials (OCP) of the electrodes within a physics-based model. This paper proposes a method to establish the relationship between the electrode OCP and stoichiometry. Galvanostatic intermittent titration technique (GITT) tests are performed on half-cells to measure the charge and discharge OCP. To account for hysteresis, a hysteresis factor is defined to balance the lithiation and de-lithiation OCP. The estimated open-circuit voltage (OCV) of the full-cell is obtained by subtracting the anode OCP from the cathode OCP. The OCP and hysteresis factor are then optimized by minimizing the error between the measured OCV and the estimated OCV. Two different OCV test methods, namely the incremental method and C/30 galvanostatic method, are compared. The OCV estimation for fresh cells shows good agreement with experimental values, with root-mean-square errors (RMSEs) below 6.682 mV. To evaluate the effectiveness of the obtained OCPs in the full-cell model, the optimized OCPs are incorporated into the physics-based model. Under the Hybrid Pulse Power Characterization (HPPC) test, the electrochemical model utilizing the optimized OCP with the incremental OCV and C/30 galvanostatic OCV exhibits RMSEs of 10.587 mV and 11.016 mV, respectively, in predicting the cell voltage. Finally, the OCP identification method is assessed with cells at different aging states. The OCV predictions for degraded cells maintain RMSEs below 9.074 mV, thus validating the effectiveness of the developed OCP estimation method.

Suggested Citation

  • Gao, Yizhao & Sun, Ziqiang & Zhang, Dong & Shi, Dapai & Zhang, Xi, 2023. "Determination of half-cell open-circuit potential curve of silicon-graphite in a physics-based model for lithium-ion batteries," Applied Energy, Elsevier, vol. 349(C).
  • Handle: RePEc:eee:appene:v:349:y:2023:i:c:s0306261923009856
    DOI: 10.1016/j.apenergy.2023.121621
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923009856
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121621?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Yu & Ren, Dongsheng & Feng, Xuning & Wang, Li & Ouyang, Minggao, 2022. "Thermal runaway modeling of large format high-nickel/silicon-graphite lithium-ion batteries based on reaction sequence and kinetics," Applied Energy, Elsevier, vol. 306(PA).
    2. Wei, Zhongbao & Hu, Jian & Li, Yang & He, Hongwen & Li, Weihan & Sauer, Dirk Uwe, 2022. "Hierarchical soft measurement of load current and state of charge for future smart lithium-ion batteries," Applied Energy, Elsevier, vol. 307(C).
    3. Bi, Yalan & Choe, Song-Yul, 2020. "An adaptive sigma-point Kalman filter with state equality constraints for online state-of-charge estimation of a Li(NiMnCo)O2/Carbon battery using a reduced-order electrochemical model," Applied Energy, Elsevier, vol. 258(C).
    4. Tian, Jinpeng & Xiong, Rui & Shen, Weixiang & Lu, Jiahuan, 2021. "State-of-charge estimation of LiFePO4 batteries in electric vehicles: A deep-learning enabled approach," Applied Energy, Elsevier, vol. 291(C).
    5. Gao, Yizhao & Liu, Chenghao & Chen, Shun & Zhang, Xi & Fan, Guodong & Zhu, Chong, 2022. "Development and parameterization of a control-oriented electrochemical model of lithium-ion batteries for battery-management-systems applications," Applied Energy, Elsevier, vol. 309(C).
    6. Sturm, J. & Ennifar, H. & Erhard, S.V. & Rheinfeld, A. & Kosch, S. & Jossen, A., 2018. "State estimation of lithium-ion cells using a physicochemical model based extended Kalman filter," Applied Energy, Elsevier, vol. 223(C), pages 103-123.
    7. Yang, Jufeng & Huang, Wenxin & Xia, Bing & Mi, Chris, 2019. "The improved open-circuit voltage characterization test using active polarization voltage reduction method," Applied Energy, Elsevier, vol. 237(C), pages 682-694.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Yong & Huang, Zhijia & Tian, Jindong & Li, Xiaoyu, 2022. "State of charge estimation of lithium-ion batteries based on cubature Kalman filters with different matrix decomposition strategies," Energy, Elsevier, vol. 238(PC).
    2. Wang, Qiao & Ye, Min & Wei, Meng & Lian, Gaoqi & Li, Yan, 2023. "Deep convolutional neural network based closed-loop SOC estimation for lithium-ion batteries in hierarchical scenarios," Energy, Elsevier, vol. 263(PB).
    3. Cui, Binghan & Wang, Han & Li, Renlong & Xiang, Lizhi & Zhao, Huaian & Xiao, Rang & Li, Sai & Liu, Zheng & Yin, Geping & Cheng, Xinqun & Ma, Yulin & Huo, Hua & Zuo, Pengjian & Lu, Taolin & Xie, Jingyi, 2024. "Ultra-early prediction of lithium-ion battery performance using mechanism and data-driven fusion model," Applied Energy, Elsevier, vol. 353(PA).
    4. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiao & Fernandez, Carlos, 2023. "A hybrid probabilistic correction model for the state of charge estimation of lithium-ion batteries considering dynamic currents and temperatures," Energy, Elsevier, vol. 273(C).
    5. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiaoyong & Fernandez, Carlos, 2022. "An optimized long short-term memory-weighted fading extended Kalman filtering model with wide temperature adaptation for the state of charge estimation of lithium-ion batteries," Applied Energy, Elsevier, vol. 326(C).
    6. Xu, Yuan-wu & Wu, Xiao-long & Zhong, Xiao-bo & Zhao, Dong-qi & Sorrentino, Marco & Jiang, Jianhua & Jiang, Chang & Fu, Xiaowei & Li, Xi, 2021. "Mechanism model-based and data-driven approach for the diagnosis of solid oxide fuel cell stack leakage," Applied Energy, Elsevier, vol. 286(C).
    7. Chen, Zheng & Zhao, Hongqian & Shu, Xing & Zhang, Yuanjian & Shen, Jiangwei & Liu, Yonggang, 2021. "Synthetic state of charge estimation for lithium-ion batteries based on long short-term memory network modeling and adaptive H-Infinity filter," Energy, Elsevier, vol. 228(C).
    8. Hu, Chunsheng & Ma, Liang & Guo, Shanshan & Guo, Gangsheng & Han, Zhiqiang, 2022. "Deep learning enabled state-of-charge estimation of LiFePO4 batteries: A systematic validation on state-of-the-art charging protocols," Energy, Elsevier, vol. 246(C).
    9. Zhang, Yue & Song, Laifeng & Tian, Jiamin & Mei, Wenxin & Jiang, Lihua & Sun, Jinhua & Wang, Qingsong, 2024. "Modeling the propagation of internal thermal runaway in lithium-ion battery," Applied Energy, Elsevier, vol. 362(C).
    10. He, Rong & He, Yongling & Xie, Wenlong & Guo, Bin & Yang, Shichun, 2023. "Comparative analysis for commercial li-ion batteries degradation using the distribution of relaxation time method based on electrochemical impedance spectroscopy," Energy, Elsevier, vol. 263(PD).
    11. Hsu, Chia-Wei & Xiong, Rui & Chen, Nan-Yow & Li, Ju & Tsou, Nien-Ti, 2022. "Deep neural network battery life and voltage prediction by using data of one cycle only," Applied Energy, Elsevier, vol. 306(PB).
    12. Yang, Jufeng & Cai, Yingfeng & Pan, Chaofeng & Mi, Chris, 2019. "A novel resistor-inductor network-based equivalent circuit model of lithium-ion batteries under constant-voltage charging condition," Applied Energy, Elsevier, vol. 254(C).
    13. Ko, Chi-Jyun & Chen, Kuo-Ching, 2024. "Using tens of seconds of relaxation voltage to estimate open circuit voltage and state of health of lithium ion batteries," Applied Energy, Elsevier, vol. 357(C).
    14. Wei, Gang & Huang, Ranjun & Zhang, Guangxu & Jiang, Bo & Zhu, Jiangong & Guo, Yangyang & Han, Guangshuai & Wei, Xuezhe & Dai, Haifeng, 2023. "A comprehensive insight into the thermal runaway issues in the view of lithium-ion battery intrinsic safety performance and venting gas explosion hazards," Applied Energy, Elsevier, vol. 349(C).
    15. Liu, Yunpeng & Hou, Bo & Ahmed, Moin & Mao, Zhiyu & Feng, Jiangtao & Chen, Zhongwei, 2024. "A hybrid deep learning approach for remaining useful life prediction of lithium-ion batteries based on discharging fragments," Applied Energy, Elsevier, vol. 358(C).
    16. Sun, Li & Li, Guanru & You, Fengqi, 2020. "Combined internal resistance and state-of-charge estimation of lithium-ion battery based on extended state observer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    17. Li, Da & Zhang, Zhaosheng & Zhou, Litao & Liu, Peng & Wang, Zhenpo & Deng, Junjun, 2022. "Multi-time-step and multi-parameter prediction for real-world proton exchange membrane fuel cell vehicles (PEMFCVs) toward fault prognosis and energy consumption prediction," Applied Energy, Elsevier, vol. 325(C).
    18. Lai, Qingzhi & Ahn, Hyoung Jun & Kim, YoungJin & Kim, You Na & Lin, Xinfan, 2021. "New data optimization framework for parameter estimation under uncertainties with application to lithium-ion battery," Applied Energy, Elsevier, vol. 295(C).
    19. Ahmed, Mostafa Shaban & Raihan, Sheikh Arif & Balasingam, Balakumar, 2020. "A scaling approach for improved state of charge representation in rechargeable batteries," Applied Energy, Elsevier, vol. 267(C).
    20. Jingwei Hu & Bing Lin & Mingfen Wang & Jie Zhang & Wenliang Zhang & Yu Lu, 2022. "State of Charge Centralized Estimation of Road Condition Information Based on Fuzzy Sunday Algorithm," Energies, MDPI, vol. 15(8), pages 1-15, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:349:y:2023:i:c:s0306261923009856. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.