IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v348y2023ics0306261923008449.html
   My bibliography  Save this article

Numerical study on thermal characteristics under external short circuit for Li||Bi liquid metal batteries

Author

Listed:
  • Zhang, Yi
  • Zhang, E
  • Guo, Zhenlin
  • He, Xin
  • He, Yaling
  • Li, Haomiao
  • Jiang, Kai
  • Zhou, Min

Abstract

As one of the most potent battery technology, liquid metal battery (LMB) plays an important role in addressing the requirement of grid energy storage. However, up to now, few attention has been paid to the heat generation characteristics and thermal safety of LMB, including the conventional and abusive conditions. In this paper, a 2D axisymmetric multi-physics field model coupling electrochemistry, heat transfer, and laminar flow is proposed to evaluate the electro-thermal behavior of 200 Ah Li||Bi LMBs under the states of constant current (CC) cycle and external short circuit (ESC). Verified by the experimental data, the maximum fitting errors of the voltage and temperature are 4.61% and 0.42%, respectively. The reversible and irreversible electrochemical heat generation rates are calculated to assess the total heat power (9.14 W during 0.2 C discharge and −5.06 W during 0.2 C charge). The reversible heat rate is found to occupy a large proportion in the total heat generation, while the percentage of irreversible heat is shown to increase with the increasing current rate. Based on the analysis of CC cycle, the model is applied to investigate the battery electro-thermal performance in ESC failure. The results show that the ESC current and surface temperature vary with the short-circuit resistance and initial state of charge (SOC). The lower ESC resistance and initial SOC may lead to a severer temperature rise due to the unique entropic heat behavior. The maximum current and temperature reach 455.8 A and 549.3 °C in 5 min (100% SOC, 0.1 mΩ). This work provides an important opportunity to advance the understanding of heat generation and abuse phenomena induced by ESC in LMB.

Suggested Citation

  • Zhang, Yi & Zhang, E & Guo, Zhenlin & He, Xin & He, Yaling & Li, Haomiao & Jiang, Kai & Zhou, Min, 2023. "Numerical study on thermal characteristics under external short circuit for Li||Bi liquid metal batteries," Applied Energy, Elsevier, vol. 348(C).
  • Handle: RePEc:eee:appene:v:348:y:2023:i:c:s0306261923008449
    DOI: 10.1016/j.apenergy.2023.121480
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923008449
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121480?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. An, Zhoujian & Zhao, Yabing & Du, Xiaoze & Shi, Tianlu & Zhang, Dong, 2023. "Experimental research on thermal-electrical behavior and mechanism during external short circuit for LiFePO4 Li-ion battery," Applied Energy, Elsevier, vol. 332(C).
    2. Kangli Wang & Kai Jiang & Brice Chung & Takanari Ouchi & Paul J. Burke & Dane A. Boysen & David J. Bradwell & Hojong Kim & Ulrich Muecke & Donald R. Sadoway, 2014. "Lithium–antimony–lead liquid metal battery for grid-level energy storage," Nature, Nature, vol. 514(7522), pages 348-350, October.
    3. Chen, Zeyu & Zhang, Bo & Xiong, Rui & Shen, Weixiang & Yu, Quanqing, 2021. "Electro-thermal coupling model of lithium-ion batteries under external short circuit," Applied Energy, Elsevier, vol. 293(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Guoan & Xu, Cheng & Li, Haomiao & Jiang, Kai & Wang, Kangli, 2019. "State of charge and online model parameters co-estimation for liquid metal batteries," Applied Energy, Elsevier, vol. 250(C), pages 677-684.
    2. Lin, Xiang-Wei & Li, Yu-Bai & Wu, Wei-Tao & Zhou, Zhi-Fu & Chen, Bin, 2024. "Advances on two-phase heat transfer for lithium-ion battery thermal management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    3. Ding, Yi & Shao, Changzheng & Yan, Jinyue & Song, Yonghua & Zhang, Chi & Guo, Chuangxin, 2018. "Economical flexibility options for integrating fluctuating wind energy in power systems: The case of China," Applied Energy, Elsevier, vol. 228(C), pages 426-436.
    4. Simpson, J.G. & Hanrahan, G. & Loth, E. & Koenig, G.M. & Sadoway, D.R., 2021. "Liquid metal battery storage in an offshore wind turbine: Concept and economic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    5. An, Zhoujian & Zhao, Yabing & Du, Xiaoze & Shi, Tianlu & Zhang, Dong, 2023. "Experimental research on thermal-electrical behavior and mechanism during external short circuit for LiFePO4 Li-ion battery," Applied Energy, Elsevier, vol. 332(C).
    6. Xinhua Zheng & Zaichun Liu & Jifei Sun & Ruihao Luo & Kui Xu & Mingyu Si & Ju Kang & Yuan Yuan & Shuang Liu & Touqeer Ahmad & Taoli Jiang & Na Chen & Mingming Wang & Yan Xu & Mingyan Chuai & Zhengxin , 2023. "Constructing robust heterostructured interface for anode-free zinc batteries with ultrahigh capacities," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Yuxin Zhou & Zhengkun Wang & Zongfa Xie & Yanan Wang, 2022. "Parametric Investigation on the Performance of a Battery Thermal Management System with Immersion Cooling," Energies, MDPI, vol. 15(7), pages 1-21, March.
    8. Xu, Cheng & Zhang, E & Jiang, Kai & Wang, Kangli, 2022. "Dual fuzzy-based adaptive extended Kalman filter for state of charge estimation of liquid metal battery," Applied Energy, Elsevier, vol. 327(C).
    9. Wang, Chao & Zhang, Xu & Cui, Yixiu & He, Ke & Cao, Yong & Liu, Xiaojiang & Zeng, Chao, 2022. "A system-level thermal-electrochemical coupled model for evaluating the activation process of thermal batteries," Applied Energy, Elsevier, vol. 328(C).
    10. Shi, Haotian & Wang, Shunli & Fernandez, Carlos & Yu, Chunmei & Xu, Wenhua & Dablu, Bobobee Etse & Wang, Liping, 2022. "Improved multi-time scale lumped thermoelectric coupling modeling and parameter dispersion evaluation of lithium-ion batteries," Applied Energy, Elsevier, vol. 324(C).
    11. Yu, Shuyang & Ma, Ya & Xie, Jingying & Xu, Chao & Lu, Taolin, 2024. "Thermal runaway chain reaction determination and mechanism model establishment of NCA-graphite battery based on the internal temperature," Applied Energy, Elsevier, vol. 353(PB).
    12. Li, Da & Deng, Junjun & Zhang, Zhaosheng & Liu, Peng & Wang, Zhenpo, 2023. "Multi-dimension statistical analysis and selection of safety-representing features for battery pack in real-world electric vehicles," Applied Energy, Elsevier, vol. 343(C).
    13. Agarwal, Daksh & Potnuru, Rakesh & Kaushik, Chiranjeev & Darla, Vinay Rajesh & Kulkarni, Kaustubh & Garg, Ashish & Gupta, Raju Kumar & Tiwari, Naveen & Nalwa, Kanwar Singh, 2022. "Recent advances in the modeling of fundamental processes in liquid metal batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    14. Xian Wang & Zhengxiang Song & Kun Yang & Xuyang Yin & Yingsan Geng & Jianhua Wang, 2019. "State of Charge Estimation for Lithium-Bismuth Liquid Metal Batteries," Energies, MDPI, vol. 12(1), pages 1-22, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:348:y:2023:i:c:s0306261923008449. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.