IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i16p6023-d1219111.html
   My bibliography  Save this article

ML-Based Intermittent Fault Detection, Classification, and Branch Identification in a Distribution Network

Author

Listed:
  • Mojgan Hojabri

    (Competence Center of Digital Energy and Electric Power, Institute of Electrical Engineering, Lucerne University of Applied Sciences and Arts, 6048 Horw, Switzerland)

  • Severin Nowak

    (Competence Center of Digital Energy and Electric Power, Institute of Electrical Engineering, Lucerne University of Applied Sciences and Arts, 6048 Horw, Switzerland)

  • Antonios Papaemmanouil

    (Competence Center of Digital Energy and Electric Power, Institute of Electrical Engineering, Lucerne University of Applied Sciences and Arts, 6048 Horw, Switzerland)

Abstract

The accurate detection and identification of intermittent cable faults are helpful in improving the reliability of the distribution system. This paper proposes intermittent fault detection and identification for distribution networks based on machine-learning (ML) techniques. For this reason, the IEEE 33 bus system is simulated in the radial and mesh topologies by considering all possible single- and three-phase electrical faults and limitations to collect high-resolution voltage and current waveforms. Moreover, this simulation investigates and considers various cases including low-impedance faults (LIFs) and high-impedance faults (HIFs) with a short and long duration. The collected data from the simulation are used for high-impedance intermittent fault detection, classification, and branch identification using eight supervised learning methods. A comparison between the accuracy and error of these ML classifiers shows that gradient booster (GB) and K-nearest neighbors (KNN) have the best performance for all three objectives. However, GB has a very high computation time compared to KNN.

Suggested Citation

  • Mojgan Hojabri & Severin Nowak & Antonios Papaemmanouil, 2023. "ML-Based Intermittent Fault Detection, Classification, and Branch Identification in a Distribution Network," Energies, MDPI, vol. 16(16), pages 1-15, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:16:p:6023-:d:1219111
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/16/6023/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/16/6023/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lago, Jesus & De Ridder, Fjo & Vrancx, Peter & De Schutter, Bart, 2018. "Forecasting day-ahead electricity prices in Europe: The importance of considering market integration," Applied Energy, Elsevier, vol. 211(C), pages 890-903.
    2. Sapountzoglou, Nikolaos & Lago, Jesus & De Schutter, Bart & Raison, Bertrand, 2020. "A generalizable and sensor-independent deep learning method for fault detection and location in low-voltage distribution grids," Applied Energy, Elsevier, vol. 276(C).
    3. Mojgan Hojabri & Samuel Kellerhals & Govinda Upadhyay & Benjamin Bowler, 2022. "IoT-Based PV Array Fault Detection and Classification Using Embedded Supervised Learning Methods," Energies, MDPI, vol. 15(6), pages 1-18, March.
    4. Saidatul Habsah Asman & Nur Fadilah Ab Aziz & Ungku Anisa Ungku Amirulddin & Mohd Zainal Abidin Ab Kadir, 2021. "Transient Fault Detection and Location in Power Distribution Network: A Review of Current Practices and Challenges in Malaysia," Energies, MDPI, vol. 14(11), pages 1-37, May.
    5. Katleho Moloi & Innocent Davidson, 2022. "High Impedance Fault Detection Protection Scheme for Power Distribution Systems," Mathematics, MDPI, vol. 10(22), pages 1-19, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rizeakos, V. & Bachoumis, A. & Andriopoulos, N. & Birbas, M. & Birbas, A., 2023. "Deep learning-based application for fault location identification and type classification in active distribution grids," Applied Energy, Elsevier, vol. 338(C).
    2. Kandpal, Bakul & Pareek, Parikshit & Verma, Ashu, 2022. "A robust day-ahead scheduling strategy for EV charging stations in unbalanced distribution grid," Energy, Elsevier, vol. 249(C).
    3. Umut Ugurlu & Ilkay Oksuz & Oktay Tas, 2018. "Electricity Price Forecasting Using Recurrent Neural Networks," Energies, MDPI, vol. 11(5), pages 1-23, May.
    4. Micha{l} Narajewski & Florian Ziel, 2020. "Ensemble Forecasting for Intraday Electricity Prices: Simulating Trajectories," Papers 2005.01365, arXiv.org, revised Aug 2020.
    5. Sun, Chenhao & Zhou, Zhuoyu & Zeng, Xiangjun & Li, Zewen & Wang, Yuanyuan & Deng, Feng, 2022. "A multi-model-integration-based prediction methodology for the spatiotemporal distribution of vulnerabilities in integrated energy systems under the multi-type, imbalanced, and dependent input data sc," Applied Energy, Elsevier, vol. 320(C).
    6. Ismael Ahrazem Dfuf & José Manuel Mira McWilliams & María Camino González Fernández, 2019. "Multi-Output Conditional Inference Trees Applied to the Electricity Market: Variable Importance Analysis," Energies, MDPI, vol. 12(6), pages 1-24, March.
    7. Sæther, Bjarne & Neumann, Anne, 2024. "The effect of the 2022 energy crisis on electricity markets ashore the North Sea," Energy Economics, Elsevier, vol. 131(C).
    8. Madadkhani, Shiva & Ikonnikova, Svetlana, 2024. "Toward high-resolution projection of electricity prices: A machine learning approach to quantifying the effects of high fuel and CO2 prices," Energy Economics, Elsevier, vol. 129(C).
    9. Hamed Rezapour & Sadegh Jamali & Alireza Bahmanyar, 2023. "Review on Artificial Intelligence-Based Fault Location Methods in Power Distribution Networks," Energies, MDPI, vol. 16(12), pages 1-18, June.
    10. Kavita Jain & Muhammed Basheer Jasser & Muzaffar Hamzah & Akash Saxena & Ali Wagdy Mohamed, 2022. "Harris Hawk Optimization-Based Deep Neural Networks Architecture for Optimal Bidding in the Electricity Market," Mathematics, MDPI, vol. 10(12), pages 1-19, June.
    11. Yang, Haolin & Schell, Kristen R., 2022. "GHTnet: Tri-Branch deep learning network for real-time electricity price forecasting," Energy, Elsevier, vol. 238(PC).
    12. Lago, Jesus & Marcjasz, Grzegorz & De Schutter, Bart & Weron, Rafał, 2021. "Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark," Applied Energy, Elsevier, vol. 293(C).
    13. Simon Hirsch & Jonathan Berrisch & Florian Ziel, 2024. "Online Distributional Regression," Papers 2407.08750, arXiv.org, revised Aug 2024.
    14. Moon, Jongwoo & Jung, Tae Yong, 2020. "A critical review of Korea's long-term contract for renewable energy auctions: The relationship between the import price of liquefied natural gas and system marginal price," Utilities Policy, Elsevier, vol. 67(C).
    15. Hu, Yu & Armada, Miguel & Jesús Sánchez, María, 2022. "Potential utilization of battery energy storage systems (BESS) in the major European electricity markets," Applied Energy, Elsevier, vol. 322(C).
    16. Zorana Božić & Dušan Dobromirov & Jovana Arsić & Mladen Radišić & Beata Ślusarczyk, 2020. "Power Exchange Prices: Comparison of Volatility in European Markets," Energies, MDPI, vol. 13(21), pages 1-15, October.
    17. Gabrielli, Paolo & Wüthrich, Moritz & Blume, Steffen & Sansavini, Giovanni, 2022. "Data-driven modeling for long-term electricity price forecasting," Energy, Elsevier, vol. 244(PB).
    18. Suryanarayana, Gowri & Lago, Jesus & Geysen, Davy & Aleksiejuk, Piotr & Johansson, Christian, 2018. "Thermal load forecasting in district heating networks using deep learning and advanced feature selection methods," Energy, Elsevier, vol. 157(C), pages 141-149.
    19. Croonenbroeck, Carsten & Stadtmann, Georg, 2019. "Renewable generation forecast studies – Review and good practice guidance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 312-322.
    20. Henrik Zsiborács & Gábor Pintér & András Vincze & Nóra Hegedűsné Baranyai, 2022. "Wind Power Generation Scheduling Accuracy in Europe: An Overview of ENTSO-E Countries," Sustainability, MDPI, vol. 14(24), pages 1-58, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:16:p:6023-:d:1219111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.