IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v335y2023ics0306261923001241.html
   My bibliography  Save this article

Electrified autonomous freight benefit analysis on fleet, infrastructure and grid leveraging Grid-Electrified Mobility (GEM) model

Author

Listed:
  • Hong, Wanshi
  • Jenn, Alan
  • Wang, Bin

Abstract

Fast-growing freight activities over the decades have become one of the major contributors to air pollution, leading to many efforts in freight decarbonization and electrification. However, the development of freight electrification is slow due to technological uncertainty, slow charging, high capital cost, etc. This paper analyzes the potential impact and benefit of heavy-duty vehicle (HDV) electrification and automation on fleet cost, infrastructure cost, the electricity grid, and environmental outcomes. In this work, we extended the vehicle electrification benefit analysis tool: Grid-Electrified Mobility (GEM) model, which had primarily been used to study light-duty passenger vehicles (LDVs), to analyze heavy-duty vehicle electrification. The extended model is derived for freight transportation electrification, and different freight electrification and automation adoption scenarios were analyzed. We find that the increased penetration of automated electric freight fleets within other types of electrified freight fleets from 1% to 99% will result in an overall cost reduction of 18.2%, fleet size reduction of 20.4%, and lower peak load reduction of 14.3%.

Suggested Citation

  • Hong, Wanshi & Jenn, Alan & Wang, Bin, 2023. "Electrified autonomous freight benefit analysis on fleet, infrastructure and grid leveraging Grid-Electrified Mobility (GEM) model," Applied Energy, Elsevier, vol. 335(C).
  • Handle: RePEc:eee:appene:v:335:y:2023:i:c:s0306261923001241
    DOI: 10.1016/j.apenergy.2023.120760
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923001241
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.120760?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Green, Erin H. & Skerlos, Steven J. & Winebrake, James J., 2014. "Increasing electric vehicle policy efficiency and effectiveness by reducing mainstream market bias," Energy Policy, Elsevier, vol. 65(C), pages 562-566.
    2. Greenblatt, Jeffery & Shaheen, Susan PhD, 2015. "Automated Vehicles, On-Demand Mobility and Environmental Impacts," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt23r1h80t, Institute of Transportation Studies, UC Berkeley.
    3. Ito, Yutaka & Managi, Shunsuke, 2015. "The potential of alternative fuel vehicles: A cost-benefit analysis," Research in Transportation Economics, Elsevier, vol. 50(C), pages 39-50.
    4. Hu, Junjie & Morais, Hugo & Sousa, Tiago & Lind, Morten, 2016. "Electric vehicle fleet management in smart grids: A review of services, optimization and control aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1207-1226.
    5. Sofia, Daniele & Gioiella, Filomena & Lotrecchiano, Nicoletta & Giuliano, Aristide, 2020. "Cost-benefit analysis to support decarbonization scenario for 2030: A case study in Italy," Energy Policy, Elsevier, vol. 137(C).
    6. Forrest, Kate & Mac Kinnon, Michael & Tarroja, Brian & Samuelsen, Scott, 2020. "Estimating the technical feasibility of fuel cell and battery electric vehicles for the medium and heavy duty sectors in California," Applied Energy, Elsevier, vol. 276(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mosè Rossi & Lingkang Jin & Andrea Monforti Ferrario & Marialaura Di Somma & Amedeo Buonanno & Christina Papadimitriou & Andrei Morch & Giorgio Graditi & Gabriele Comodi, 2024. "Energy Hub and Micro-Energy Hub Architecture in Integrated Local Energy Communities: Enabling Technologies and Energy Planning Tools," Energies, MDPI, vol. 17(19), pages 1-50, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ji, Zhenya & Huang, Xueliang, 2018. "Plug-in electric vehicle charging infrastructure deployment of China towards 2020: Policies, methodologies, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 710-727.
    2. Nunes, Pedro & Figueiredo, Raquel & Brito, Miguel C., 2016. "The use of parking lots to solar-charge electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 679-693.
    3. Zhu, Min & Dong, Peiwu & Ju, Yanbing & Li, Jiajun & Ran, Lun, 2023. "Effects of government subsidies on heavy-duty hydrogen fuel cell truck penetration: A scenario-based system dynamics model," Energy Policy, Elsevier, vol. 183(C).
    4. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    5. Mardones, Cristian, 2021. "Ex-post evaluation and cost-benefit analysis of a heater replacement program implemented in southern Chile," Energy, Elsevier, vol. 227(C).
    6. Lane, Blake & Kinnon, Michael Mac & Shaffer, Brendan & Samuelsen, Scott, 2022. "Deployment planning tool for environmentally sensitive heavy-duty vehicles and fueling infrastructure," Energy Policy, Elsevier, vol. 171(C).
    7. Barbour, Natalia & Menon, Nikhil & Zhang, Yu & Mannering, Fred, 2019. "Shared automated vehicles: A statistical analysis of consumer use likelihoods and concerns," Transport Policy, Elsevier, vol. 80(C), pages 86-93.
    8. Pons-Prats, Jordi & Živojinović, Tanja & Kuljanin, Jovana, 2022. "On the understanding of the current status of urban air mobility development and its future prospects: Commuting in a flying vehicle as a new paradigm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    9. Besagni, Giorgio & Premoli Vilà, Lidia & Borgarello, Marco & Trabucchi, Andrea & Merlo, Marco & Rodeschini, Jacopo & Finazzi, Francesco, 2021. "Electrification pathways of the Italian residential sector under socio-demographic constrains: Looking towards 2040," Energy, Elsevier, vol. 217(C).
    10. Khan, Mohd Atiqueuzzaman & Ngo, Huu Hao & Guo, Wenshan & Liu, Yiwen & Zhang, Xinbo & Guo, Jianbo & Chang, Soon Woong & Nguyen, Dinh Duc & Wang, Jie, 2018. "Biohydrogen production from anaerobic digestion and its potential as renewable energy," Renewable Energy, Elsevier, vol. 129(PB), pages 754-768.
    11. Hong, Sanghyun & Kim, Eunsung & Jeong, Saerok, 2023. "Evaluating the sustainability of the hydrogen economy using multi-criteria decision-making analysis in Korea," Renewable Energy, Elsevier, vol. 204(C), pages 485-492.
    12. Xiaonan Wang & Licheng Wang & Jianping Chen & Shouting Zhang & Paolo Tarolli, 2020. "Assessment of the External Costs of Life Cycle of Coal: The Case Study of Southwestern China," Energies, MDPI, vol. 13(15), pages 1-26, August.
    13. Asaad Mohammad & Ramon Zamora & Tek Tjing Lie, 2020. "Integration of Electric Vehicles in the Distribution Network: A Review of PV Based Electric Vehicle Modelling," Energies, MDPI, vol. 13(17), pages 1-20, September.
    14. Lee, Junmin & Kim, Keungoui & Kim, Jiyong & Hwang, Junseok, 2022. "The relationship between shared mobility and regulation in South Korea: A system dynamics approach from the socio-technical transitions perspective," Technovation, Elsevier, vol. 109(C).
    15. Haugen, Molly J. & Paoli, Leonardo & Cullen, Jonathan & Cebon, David & Boies, Adam M., 2021. "A fork in the road: Which energy pathway offers the greatest energy efficiency and CO2 reduction potential for low-carbon vehicles?," Applied Energy, Elsevier, vol. 283(C).
    16. Sajjad Haider & Peter Schegner, 2020. "Heuristic Optimization of Overloading Due to Electric Vehicles in a Low Voltage Grid," Energies, MDPI, vol. 13(22), pages 1-19, November.
    17. Matthew, George Jr. & Nuttall, William J & Mestel, Ben & Dooley, Laurence S, 2017. "A dynamic simulation of low-carbon policy influences on endogenous electricity demand in an isolated island system," Energy Policy, Elsevier, vol. 109(C), pages 121-131.
    18. Shi You & Junjie Hu & Charalampos Ziras, 2016. "An Overview of Modeling Approaches Applied to Aggregation-Based Fleet Management and Integration of Plug-in Electric Vehicles †," Energies, MDPI, vol. 9(11), pages 1-18, November.
    19. Zhenya Ji & Xueliang Huang & Changfu Xu & Houtao Sun, 2016. "Accelerated Model Predictive Control for Electric Vehicle Integrated Microgrid Energy Management: A Hybrid Robust and Stochastic Approach," Energies, MDPI, vol. 9(11), pages 1-18, November.
    20. Shariatio, O. & Coker, P.J. & Smith, S.T. & Potter, B. & Holderbaum, W., 2024. "An integrated techno-economic approach for design and energy management of heavy goods electric vehicle charging station with energy storage systems," Applied Energy, Elsevier, vol. 369(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:335:y:2023:i:c:s0306261923001241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.