IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v322y2022ics0306261922008467.html
   My bibliography  Save this article

Reduced building energy consumption by combined indoor CO2 and H2O composition control

Author

Listed:
  • Sinha, Anshuman
  • Thakkar, Harshul
  • Rezaei, Fateme
  • Kawajiri, Yoshiaki
  • Realff, Matthew J.

Abstract

Rapid growth in global energy consumption has raised concern on the environmental impacts such as ozone layer depletion and climate change. Enclosed space, such as commercial buildings, accounts for about 40% of global energy consumption and the demand is constantly increasing due to increasing population, urbanization, and economic development. The energy demands in the building sector calls for strategic measures to develop energy efficient technologies. This paper presents a strategy to decrease energy demands inside buildings by proposing a ventilation system which regulates the enclosed air quality resulting in reduced air conditioning. The system consists of multiple adsorption beds with zeolite 13X monoliths for CO2 removal, and silica gel for humidity control, inside the enclosed space. The air conditioning system results in decrease in energy requirement and improvement in economics by 55% as compared with conventional ventilation system. The model is scaled up to the size comparable with total office inventory of New York City, and the reduction in carbon emissions by introducing the air composition control system for New York City is equivalent to replacing 57 million incandescent light bulbs by LEDs. This paper concludes that the air conditioning system proposed in this study results in the improvement in performance as compared to a conventional ventilation system and could reduce energy consumption inside commercial buildings.

Suggested Citation

  • Sinha, Anshuman & Thakkar, Harshul & Rezaei, Fateme & Kawajiri, Yoshiaki & Realff, Matthew J., 2022. "Reduced building energy consumption by combined indoor CO2 and H2O composition control," Applied Energy, Elsevier, vol. 322(C).
  • Handle: RePEc:eee:appene:v:322:y:2022:i:c:s0306261922008467
    DOI: 10.1016/j.apenergy.2022.119526
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922008467
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119526?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cui, X. & Mohan, B. & Islam, M.R. & Chou, S.K. & Chua, K.J., 2017. "Energy performance evaluation and application of an air treatment system for conditioning building spaces in tropics," Applied Energy, Elsevier, vol. 204(C), pages 1500-1512.
    2. Li, Bingxu & Wu, Bingjie & Peng, Yelun & Cai, Wenjian, 2022. "Tube-based robust model predictive control of multi-zone demand-controlled ventilation systems for energy saving and indoor air quality," Applied Energy, Elsevier, vol. 307(C).
    3. Xu, Xiaoyu & González, Jorge E. & Shen, Shuanghe & Miao, Shiguang & Dou, Junxia, 2018. "Impacts of urbanization and air pollution on building energy demands — Beijing case study," Applied Energy, Elsevier, vol. 225(C), pages 98-109.
    4. Aktacir, Mehmet Azmi & Büyükalaca, Orhan & YIlmaz, Tuncay, 2010. "A case study for influence of building thermal insulation on cooling load and air-conditioning system in the hot and humid regions," Applied Energy, Elsevier, vol. 87(2), pages 599-607, February.
    5. Yang, Liu & Yan, Haiyan & Lam, Joseph C., 2014. "Thermal comfort and building energy consumption implications – A review," Applied Energy, Elsevier, vol. 115(C), pages 164-173.
    6. Costa, Andrea & Keane, Marcus M. & Torrens, J. Ignacio & Corry, Edward, 2013. "Building operation and energy performance: Monitoring, analysis and optimisation toolkit," Applied Energy, Elsevier, vol. 101(C), pages 310-316.
    7. Ruan, Yingjun & Liu, Qingrong & Zhou, Weiguo & Firestone, Ryan & Gao, Weijun & Watanabe, Toshiyuki, 2009. "Optimal option of distributed generation technologies for various commercial buildings," Applied Energy, Elsevier, vol. 86(9), pages 1641-1653, September.
    8. Randazzo, Teresa & De Cian, Enrica & Mistry, Malcolm N., 2020. "Air conditioning and electricity expenditure: The role of climate in temperate countries," Economic Modelling, Elsevier, vol. 90(C), pages 273-287.
    9. Thomas Taylor & Peter Schwarz & James Cochell, 2005. "24/7 Hourly Response to Electricity Real-Time Pricing with up to Eight Summers of Experience," Journal of Regulatory Economics, Springer, vol. 27(3), pages 235-262, January.
    10. Du, Yan & Zandi, Helia & Kotevska, Olivera & Kurte, Kuldeep & Munk, Jeffery & Amasyali, Kadir & Mckee, Evan & Li, Fangxing, 2021. "Intelligent multi-zone residential HVAC control strategy based on deep reinforcement learning," Applied Energy, Elsevier, vol. 281(C).
    11. Li, Wenzhuo & Wang, Shengwei, 2020. "A multi-agent based distributed approach for optimal control of multi-zone ventilation systems considering indoor air quality and energy use," Applied Energy, Elsevier, vol. 275(C).
    12. Li, Danny H.W. & Yang, Liu & Lam, Joseph C., 2012. "Impact of climate change on energy use in the built environment in different climate zones – A review," Energy, Elsevier, vol. 42(1), pages 103-112.
    13. Hong, Tianzhen & Yang, Le & Hill, David & Feng, Wei, 2014. "Data and analytics to inform energy retrofit of high performance buildings," Applied Energy, Elsevier, vol. 126(C), pages 90-106.
    14. Zhang, Sheng & Ai, Zhengtao & Lin, Zhang, 2021. "Novel demand-controlled optimization of constant-air-volume mechanical ventilation for indoor air quality, durability and energy saving," Applied Energy, Elsevier, vol. 293(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Chunxiao & Cui, Can & Li, Ming, 2023. "A proactive 2-stage indoor CO2-based demand-controlled ventilation method considering control performance and energy efficiency," Applied Energy, Elsevier, vol. 329(C).
    2. Panagiotis Michailidis & Iakovos Michailidis & Dimitrios Vamvakas & Elias Kosmatopoulos, 2023. "Model-Free HVAC Control in Buildings: A Review," Energies, MDPI, vol. 16(20), pages 1-45, October.
    3. Ruparathna, Rajeev & Hewage, Kasun & Sadiq, Rehan, 2016. "Improving the energy efficiency of the existing building stock: A critical review of commercial and institutional buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1032-1045.
    4. James Ogundiran & Ehsan Asadi & Manuel Gameiro da Silva, 2024. "A Systematic Review on the Use of AI for Energy Efficiency and Indoor Environmental Quality in Buildings," Sustainability, MDPI, vol. 16(9), pages 1-30, April.
    5. Jin Wei & Fangsi Yu & Haixiu Liang & Maohui Luo, 2020. "Thermal Performance of Vertical Courtyard System in Office Buildings Under Typical Hot Days in Hot-Humid Climate Area: A Case Study," Sustainability, MDPI, vol. 12(7), pages 1-14, March.
    6. Guo, Siyue & Yan, Da & Hong, Tianzhen & Xiao, Chan & Cui, Ying, 2019. "A novel approach for selecting typical hot-year (THY) weather data," Applied Energy, Elsevier, vol. 242(C), pages 1634-1648.
    7. Zhou, Xinlei & Lin, Wenye & Kumar, Ritunesh & Cui, Ping & Ma, Zhenjun, 2022. "A data-driven strategy using long short term memory models and reinforcement learning to predict building electricity consumption," Applied Energy, Elsevier, vol. 306(PB).
    8. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "A review of uncertainty characterisation approaches for the optimal design of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 258-277.
    9. Michailidis, Iakovos T. & Schild, Thomas & Sangi, Roozbeh & Michailidis, Panagiotis & Korkas, Christos & Fütterer, Johannes & Müller, Dirk & Kosmatopoulos, Elias B., 2018. "Energy-efficient HVAC management using cooperative, self-trained, control agents: A real-life German building case study," Applied Energy, Elsevier, vol. 211(C), pages 113-125.
    10. Salata, Ferdinando & Ciancio, Virgilio & Dell'Olmo, Jacopo & Golasi, Iacopo & Palusci, Olga & Coppi, Massimo, 2020. "Effects of local conditions on the multi-variable and multi-objective energy optimization of residential buildings using genetic algorithms," Applied Energy, Elsevier, vol. 260(C).
    11. Kang, Jing & Wang, Shengwei, 2018. "Robust optimal design of distributed energy systems based on life-cycle performance analysis using a probabilistic approach considering uncertainties of design inputs and equipment degradations," Applied Energy, Elsevier, vol. 231(C), pages 615-627.
    12. Su, Wei & Ai, Zhengtao & Liu, Jing & Yang, Bin & Wang, Faming, 2023. "Maintaining an acceptable indoor air quality of spaces by intentional natural ventilation or intermittent mechanical ventilation with minimum energy use," Applied Energy, Elsevier, vol. 348(C).
    13. Olonscheck, Mady & Walther, Carsten & Lüdeke, Matthias & Kropp, Jürgen P., 2015. "Feasibility of energy reduction targets under climate change: The case of the residential heating energy sector of the Netherlands," Energy, Elsevier, vol. 90(P1), pages 560-569.
    14. Paulína Šujanová & Monika Rychtáriková & Tiago Sotto Mayor & Affan Hyder, 2019. "A Healthy, Energy-Efficient and Comfortable Indoor Environment, a Review," Energies, MDPI, vol. 12(8), pages 1-37, April.
    15. Medved, Sašo & Babnik, Miha & Vidrih, Boris & Arkar, Ciril, 2014. "Parametric study on the advantages of weather-predicted control algorithm of free cooling ventilation system," Energy, Elsevier, vol. 73(C), pages 80-87.
    16. Zhang, Sheng & Liu, Jun & Wang, Fenghao & Chai, Jiale, 2023. "Design optimization of medium-deep borehole heat exchanger for building heating under climate change," Energy, Elsevier, vol. 282(C).
    17. Yu, Xinqiao & Yan, Da & Sun, Kaiyu & Hong, Tianzhen & Zhu, Dandan, 2016. "Comparative study of the cooling energy performance of variable refrigerant flow systems and variable air volume systems in office buildings," Applied Energy, Elsevier, vol. 183(C), pages 725-736.
    18. De Rosa, Mattia & Bianco, Vincenzo & Scarpa, Federico & Tagliafico, Luca A., 2014. "Heating and cooling building energy demand evaluation; a simplified model and a modified degree days approach," Applied Energy, Elsevier, vol. 128(C), pages 217-229.
    19. Li, Bingxu & Wu, Bingjie & Peng, Yelun & Cai, Wenjian, 2022. "Tube-based robust model predictive control of multi-zone demand-controlled ventilation systems for energy saving and indoor air quality," Applied Energy, Elsevier, vol. 307(C).
    20. Wang, Cheng & Zhu, Ye & Guo, Xiaofeng, 2019. "Thermally responsive coating on building heating and cooling energy efficiency and indoor comfort improvement," Applied Energy, Elsevier, vol. 253(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:322:y:2022:i:c:s0306261922008467. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.