IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v330y2023ipas0306261922015513.html
   My bibliography  Save this article

An adaptive active power rolling dispatch strategy for high proportion of renewable energy based on distributed deep reinforcement learning

Author

Listed:
  • Bai, Yuyang
  • Chen, Siyuan
  • Zhang, Jun
  • Xu, Jian
  • Gao, Tianlu
  • Wang, Xiaohui
  • Wenzhong Gao, David

Abstract

In this article, an adaptive active power rolling dispatch strategy based on distributed deep reinforcement learning is proposed to deal with the uncertainty of high-proportioned renewable energy. For each agent, by using recurrent neural network layers and graph attention layers in its network structure, we aim to improve the generalization ability of the multiple agents in active power flow control. Furthermore, a regional graph attention network algorithm, which can effectively help agents aggregate the regional information of their neighborhood, is proposed to improve the information capture ability of agents. We adopt the structure of ‘centralized training, distributed execution’ to help agents improve the effectiveness of proposed methods in dynamic environments. The case studies demonstrate that the proposed algorithm can help multi-agents learn effective active power control strategies. Each agent has a strong generalization ability in terms of time granularity and network topology. We expect that such an approach can improve the practicability and adaptability of distributed AI method on power system control issues.

Suggested Citation

  • Bai, Yuyang & Chen, Siyuan & Zhang, Jun & Xu, Jian & Gao, Tianlu & Wang, Xiaohui & Wenzhong Gao, David, 2023. "An adaptive active power rolling dispatch strategy for high proportion of renewable energy based on distributed deep reinforcement learning," Applied Energy, Elsevier, vol. 330(PA).
  • Handle: RePEc:eee:appene:v:330:y:2023:i:pa:s0306261922015513
    DOI: 10.1016/j.apenergy.2022.120294
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922015513
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120294?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Zhaoqi & Zhang, Lu & Tang, Wei & Chen, Ying & Shen, Chen, 2022. "Equilibrium allocation strategy of multiple ESSs considering the economics and restoration capability in DNs," Applied Energy, Elsevier, vol. 306(PA).
    2. Lee, Chia-Yen, 2018. "Mixed-strategy Nash equilibrium in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 266(3), pages 1013-1024.
    3. Li, Jinghua & Zhou, Jiasheng & Chen, Bo, 2020. "Review of wind power scenario generation methods for optimal operation of renewable energy systems," Applied Energy, Elsevier, vol. 280(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rui Wang & Zhanqiang Zhang & Keqilao Meng & Pengbing Lei & Kuo Wang & Wenlu Yang & Yong Liu & Zhihua Lin, 2024. "Research on Energy Scheduling Optimization Strategy with Compressed Air Energy Storage," Sustainability, MDPI, vol. 16(18), pages 1-18, September.
    2. Ye, Lin & Jin, Yifei & Wang, Kaifeng & Chen, Wei & Wang, Fei & Dai, Binhua, 2023. "A multi-area intra-day dispatch strategy for power systems under high share of renewable energy with power support capacity assessment," Applied Energy, Elsevier, vol. 351(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heo, SungKu & Byun, Jaewon & Ifaei, Pouya & Ko, Jaerak & Ha, Byeongmin & Hwangbo, Soonho & Yoo, ChangKyoo, 2024. "Towards mega-scale decarbonized industrial park (Mega-DIP): Generative AI-driven techno-economic and environmental assessment of renewable and sustainable energy utilization in petrochemical industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    2. Yang, Mao & Wang, Da & Xu, Chuanyu & Dai, Bozhi & Ma, Miaomiao & Su, Xin, 2023. "Power transfer characteristics in fluctuation partition algorithm for wind speed and its application to wind power forecasting," Renewable Energy, Elsevier, vol. 211(C), pages 582-594.
    3. Chen, Lei & Jiang, Yuqi & Zheng, Shencong & Deng, Xinyi & Chen, Hongkun & Islam, Md. Rabiul, 2023. "A two-layer optimal configuration approach of energy storage systems for resilience enhancement of active distribution networks," Applied Energy, Elsevier, vol. 350(C).
    4. Zhu, Xiaoxun & Liu, Ruizhang & Chen, Yao & Gao, Xiaoxia & Wang, Yu & Xu, Zixu, 2021. "Wind speed behaviors feather analysis and its utilization on wind speed prediction using 3D-CNN," Energy, Elsevier, vol. 236(C).
    5. Chu, Junfei & Shao, Caifeng & Emrouznejad, Ali & Wu, Jie & Yuan, Zhe, 2021. "Performance evaluation of organizations considering economic incentives for emission reduction: A carbon emission permit trading approach," Energy Economics, Elsevier, vol. 101(C).
    6. Yang, Hongming & Liang, Rui & Yuan, Yuan & Chen, Bowen & Xiang, Sheng & Liu, Junpeng & Zhao, Huan & Ackom, Emmanuel, 2022. "Distributionally robust optimal dispatch in the power system with high penetration of wind power based on net load fluctuation data," Applied Energy, Elsevier, vol. 313(C).
    7. Dhaval Dalal & Muhammad Bilal & Hritik Shah & Anwarul Islam Sifat & Anamitra Pal & Philip Augustin, 2023. "Cross-Correlated Scenario Generation for Renewable-Rich Power Systems Using Implicit Generative Models," Energies, MDPI, vol. 16(4), pages 1-20, February.
    8. Lee, Chia-Yen & Wang, Ke, 2019. "Nash marginal abatement cost estimation of air pollutant emissions using the stochastic semi-nonparametric frontier," European Journal of Operational Research, Elsevier, vol. 273(1), pages 390-400.
    9. Ma, Chao & Xu, Ximeng & Pang, Xiulan & Li, Xiaofeng & Zhang, Pengfei & Liu, Lu, 2024. "Scenario-based ultra-short-term rolling optimal operation of a photovoltaic-energy storage system under forecast uncertainty," Applied Energy, Elsevier, vol. 356(C).
    10. Wang, Yijian & Cui, Yang & Li, Yang & Xu, Yang, 2023. "Collaborative optimization of multi-microgrids system with shared energy storage based on multi-agent stochastic game and reinforcement learning," Energy, Elsevier, vol. 280(C).
    11. Fangqing Wei & Junfei Chu & Jiayun Song & Feng Yang, 2019. "A cross-bargaining game approach for direction selection in the directional distance function," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(3), pages 787-807, September.
    12. Song, Yuguang & Chen, Fangjian & Xia, Mingchao & Chen, Qifang, 2022. "The interactive dispatch strategy for thermostatically controlled loads based on the source–load collaborative evolution," Applied Energy, Elsevier, vol. 309(C).
    13. Li, Zilu & Peng, Xiangang & Cui, Wenbo & Xu, Yilin & Liu, Jianan & Yuan, Haoliang & Lai, Chun Sing & Lai, Loi Lei, 2024. "A novel scenario generation method of renewable energy using improved VAEGAN with controllable interpretable features," Applied Energy, Elsevier, vol. 363(C).
    14. Yujiang Ye & Ruifeng Shi & Yuqin Gao & Xiaolei Ma & Di Wang, 2023. "Two-Stage Optimal Scheduling of Highway Self-Consistent Energy System in Western China," Energies, MDPI, vol. 16(5), pages 1-18, March.
    15. Juseung Choi & Hoyong Eom & Seung-Mook Baek, 2022. "A Wind Power Probabilistic Model Using the Reflection Method and Multi-Kernel Function Kernel Density Estimation," Energies, MDPI, vol. 15(24), pages 1-17, December.
    16. Zhang, Mingze & Li, Weidong & Yu, Samson Shenglong & Wang, Haixia & Ba, Yu, 2024. "Optimal day-ahead large-scale battery dispatch model for multi-regulation participation considering full timescale uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    17. Hui Hwang Goh & Gumeng Peng & Dongdong Zhang & Wei Dai & Tonni Agustiono Kurniawan & Kai Chen Goh & Chin Leei Cham, 2022. "A New Wind Speed Scenario Generation Method Based on Principal Component and R-Vine Copula Theories," Energies, MDPI, vol. 15(7), pages 1-21, April.
    18. Markos A. Kousounadis-Knousen & Ioannis K. Bazionis & Athina P. Georgilaki & Francky Catthoor & Pavlos S. Georgilakis, 2023. "A Review of Solar Power Scenario Generation Methods with Focus on Weather Classifications, Temporal Horizons, and Deep Generative Models," Energies, MDPI, vol. 16(15), pages 1-29, July.
    19. Amedeo Buonanno & Martina Caliano & Marialaura Di Somma & Giorgio Graditi & Maria Valenti, 2022. "A Comprehensive Tool for Scenario Generation of Solar Irradiance Profiles," Energies, MDPI, vol. 15(23), pages 1-18, November.
    20. Niloofar Vahabzadeh Najafi & Alireza Arshadi Khamseh & Abolfazl Mirzazadeh, 2020. "An Integrated Sustainable and Flexible Supplier Evaluation Model under Uncertainty by Game Theory and Subjective/Objective Data: Iranian Casting Industry," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 21(4), pages 309-322, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:330:y:2023:i:pa:s0306261922015513. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.