IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v330y2023ipas0306261922015355.html
   My bibliography  Save this article

Demand response management of community integrated energy system: A multi-energy retail package perspective

Author

Listed:
  • Gao, Hongjun
  • Zhao, Yinbo
  • He, Shuaijia
  • Liu, Junyong

Abstract

The community integrated energy system (CIES) is becoming an effective way to improve the energy utilization efficiency and reduce the carbon emission. Demand response in a CIES may be more challenge with the participation of multi-energy consumers. In this paper, we propose a novel multi-energy retail package mechanism, which provides a new perspective for demand response management in CIES. Firstly, we describe the operation rules of the energy retail package mechanism proposed in this paper, aiming at promoting the electricity and gas loads peak shaving and the electricity load valley filling in electricity-gas CIES. Secondly, a bi-level optimization model is built to optimize a set of packages with different response requirements and discounts for different consumers. The lower model adopts Multinomial Logit theory to simulate the consumer's package selecting and energy use behavior when facing different energy retail packages while the upper model optimizes package parameters with the objective of maximizing CIES operator increased benefit. Finally, the effectiveness of the energy retail package mechanism designed in this paper for demand response management is verified through example analysis.

Suggested Citation

  • Gao, Hongjun & Zhao, Yinbo & He, Shuaijia & Liu, Junyong, 2023. "Demand response management of community integrated energy system: A multi-energy retail package perspective," Applied Energy, Elsevier, vol. 330(PA).
  • Handle: RePEc:eee:appene:v:330:y:2023:i:pa:s0306261922015355
    DOI: 10.1016/j.apenergy.2022.120278
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922015355
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120278?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Yongli & Ma, Yuze & Song, Fuhao & Ma, Yang & Qi, Chengyuan & Huang, Feifei & Xing, Juntai & Zhang, Fuwei, 2020. "Economic and efficient multi-objective operation optimization of integrated energy system considering electro-thermal demand response," Energy, Elsevier, vol. 205(C).
    2. Sioshansi, Ramteen, 2016. "Retail electricity tariff and mechanism design to incentivize distributed renewable generation," Energy Policy, Elsevier, vol. 95(C), pages 498-508.
    3. Lin, Wei & Jin, Xiaolong & Mu, Yunfei & Jia, Hongjie & Xu, Xiandong & Yu, Xiaodan & Zhao, Bo, 2018. "A two-stage multi-objective scheduling method for integrated community energy system," Applied Energy, Elsevier, vol. 216(C), pages 428-441.
    4. Günther, Claudia & Schill, Wolf-Peter & Zerrahn, Alexander, 2021. "Prosumage of solar electricity: Tariff design, capacity investments, and power sector effects," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 152.
    5. Chen, Yongbao & Xu, Peng & Chu, Yiyi & Li, Weilin & Wu, Yuntao & Ni, Lizhou & Bao, Yi & Wang, Kun, 2017. "Short-term electrical load forecasting using the Support Vector Regression (SVR) model to calculate the demand response baseline for office buildings," Applied Energy, Elsevier, vol. 195(C), pages 659-670.
    6. Ansarin, Mohammad & Ghiassi-Farrokhfal, Yashar & Ketter, Wolfgang & Collins, John, 2020. "The economic consequences of electricity tariff design in a renewable energy era," Applied Energy, Elsevier, vol. 275(C).
    7. Cui, Qiong & Ma, Peipei & Huang, Lei & Shu, Jie & Luv, Jie & Lu, Lin, 2020. "Effect of device models on the multiobjective optimal operation of CCHP microgrids considering shiftable loads," Applied Energy, Elsevier, vol. 275(C).
    8. Wu, Wanlu & Cheng, Yuanyuan & Lin, Xiqiao & Yao, Xin, 2019. "How does the implementation of the Policy of Electricity Substitution influence green economic growth in China?," Energy Policy, Elsevier, vol. 131(C), pages 251-261.
    9. Li, Guoqing & Zhang, Rufeng & Jiang, Tao & Chen, Houhe & Bai, Linquan & Cui, Hantao & Li, Xiaojing, 2017. "Optimal dispatch strategy for integrated energy systems with CCHP and wind power," Applied Energy, Elsevier, vol. 192(C), pages 408-419.
    10. Zhao, Haoran & Wu, Qiuwei & Hu, Shuju & Xu, Honghua & Rasmussen, Claus Nygaard, 2015. "Review of energy storage system for wind power integration support," Applied Energy, Elsevier, vol. 137(C), pages 545-553.
    11. Alexandre Lucas & Luca Jansen & Nikoleta Andreadou & Evangelos Kotsakis & Marcelo Masera, 2019. "Load Flexibility Forecast for DR Using Non-Intrusive Load Monitoring in the Residential Sector," Energies, MDPI, vol. 12(14), pages 1-19, July.
    12. François Bourguignon & Martin Fournier & Marc Gurgand, 2007. "Selection Bias Corrections Based On The Multinomial Logit Model: Monte Carlo Comparisons," Journal of Economic Surveys, Wiley Blackwell, vol. 21(1), pages 174-205, February.
    13. Li, Lanlan & Gong, Chengzhu & Tian, Shizhong & Jiao, Jianling, 2016. "The peak-shaving efficiency analysis of natural gas time-of-use pricing for residential consumers: Evidence from multi-agent simulation," Energy, Elsevier, vol. 96(C), pages 48-58.
    14. Mendes, Gonçalo & Ioakimidis, Christos & Ferrão, Paulo, 2011. "On the planning and analysis of Integrated Community Energy Systems: A review and survey of available tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4836-4854.
    15. Wenshi Wang & Houqi Dong & Yangfan Luo & Changhao Zhang & Bo Zeng & Fuqiang Xu & Ming Zeng, 2021. "An Interval Optimization-Based Approach for Electric–Heat–Gas Coupled Energy System Planning Considering the Correlation between Uncertainties," Energies, MDPI, vol. 14(9), pages 1-24, April.
    16. Zhou, Zhe & Moura, Scott J. & Zhang, Hongcai & Zhang, Xuan & Guo, Qinglai & Sun, Hongbin, 2021. "Power-traffic network equilibrium incorporating behavioral theory: A potential game perspective," Applied Energy, Elsevier, vol. 289(C).
    17. Chen, Xi & Wang, Chengfu & Wu, Qiuwei & Dong, Xiaoming & Yang, Ming & He, Suoying & Liang, Jun, 2020. "Optimal operation of integrated energy system considering dynamic heat-gas characteristics and uncertain wind power," Energy, Elsevier, vol. 198(C).
    18. Gong, Chengzhu & Tang, Kai & Zhu, Kejun & Hailu, Atakelty, 2016. "An optimal time-of-use pricing for urban gas: A study with a multi-agent evolutionary game-theoretic perspective," Applied Energy, Elsevier, vol. 163(C), pages 283-294.
    19. Zheng, Shunlin & Sun, Yi & Li, Bin & Qi, Bing & Zhang, Xudong & Li, Fei, 2021. "Incentive-based integrated demand response for multiple energy carriers under complex uncertainties and double coupling effects," Applied Energy, Elsevier, vol. 283(C).
    20. Sezgen, Osman & Goldman, C.A. & Krishnarao, P., 2007. "Option value of electricity demand response," Energy, Elsevier, vol. 32(2), pages 108-119.
    21. Koirala, Binod Prasad & Koliou, Elta & Friege, Jonas & Hakvoort, Rudi A. & Herder, Paulien M., 2016. "Energetic communities for community energy: A review of key issues and trends shaping integrated community energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 722-744.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chunxia Gao & Zhaoyan Zhang & Peiguang Wang, 2023. "Day-Ahead Scheduling Strategy Optimization of Electric–Thermal Integrated Energy System to Improve the Proportion of New Energy," Energies, MDPI, vol. 16(9), pages 1-30, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Na & Hakvoort, Rudi A. & Lukszo, Zofia, 2021. "Cost allocation in integrated community energy systems - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    2. Li, Na & Hakvoort, Rudi A. & Lukszo, Zofia, 2022. "Cost allocation in integrated community energy systems — Performance assessment," Applied Energy, Elsevier, vol. 307(C).
    3. Jiajia Li & Jinfu Liu & Peigang Yan & Xingshuo Li & Guowen Zhou & Daren Yu, 2021. "Operation Optimization of Integrated Energy System under a Renewable Energy Dominated Future Scene Considering Both Independence and Benefit: A Review," Energies, MDPI, vol. 14(4), pages 1-36, February.
    4. Tuomo Joensuu & Markku Norvasuo & Harry Edelman, 2019. "Stakeholders’ Interests in Developing an Energy Ecosystem for the Superblock—Case Hiedanranta," Sustainability, MDPI, vol. 12(1), pages 1-19, December.
    5. Zhou, Yizhou & Wei, Zhinong & Sun, Guoqiang & Cheung, Kwok W. & Zang, Haixiang & Chen, Sheng, 2018. "A robust optimization approach for integrated community energy system in energy and ancillary service markets," Energy, Elsevier, vol. 148(C), pages 1-15.
    6. Qu, Kaiping & Shi, Shouyuan & Yu, Tao & Wang, Wenrui, 2019. "A convex decentralized optimization for environmental-economic power and gas system considering diversified emission control," Applied Energy, Elsevier, vol. 240(C), pages 630-645.
    7. Yuan, Yu & Bai, Zhang & Zhou, Shengdong & Zheng, Bo & Hu, Wenxin, 2022. "Potential of applying the thermochemical recuperation in combined cooling, heating and power generation: Flexible demand response characteristics," Applied Energy, Elsevier, vol. 325(C).
    8. Gong, Chengzhu & Yu, Shiwei & Zhu, Kejun & Hailu, Atakelty, 2016. "Evaluating the influence of increasing block tariffs in residential gas sector using agent-based computational economics," Energy Policy, Elsevier, vol. 92(C), pages 334-347.
    9. Scheller, Fabian & Bruckner, Thomas, 2019. "Energy system optimization at the municipal level: An analysis of modeling approaches and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 444-461.
    10. Zhang, Youjun & Hao, Junhong & Ge, Zhihua & Zhang, Fuxiang & Du, Xiaoze, 2021. "Optimal clean heating mode of the integrated electricity and heat energy system considering the comprehensive energy-carbon price," Energy, Elsevier, vol. 231(C).
    11. Li, Ke & Ye, Ning & Li, Shuzhen & Wang, Haiyang & Zhang, Chenghui, 2023. "Distributed collaborative operation strategies in multi-agent integrated energy system considering integrated demand response based on game theory," Energy, Elsevier, vol. 273(C).
    12. Chen, Changming & Wu, Xueyan & Li, Yan & Zhu, Xiaojun & Li, Zesen & Ma, Jien & Qiu, Weiqiang & Liu, Chang & Lin, Zhenzhi & Yang, Li & Wang, Qin & Ding, Yi, 2021. "Distributionally robust day-ahead scheduling of park-level integrated energy system considering generalized energy storages," Applied Energy, Elsevier, vol. 302(C).
    13. Lu-Miao Li, Peng Zhou, and Wen Wen, 2023. "Distributed Renewable Energy Investment: The Effect of Time-of-Use Pricing," The Energy Journal, International Association for Energy Economics, vol. 0(Number 5).
    14. Mu, Yunfei & Chen, Wanqing & Yu, Xiaodan & Jia, Hongjie & Hou, Kai & Wang, Congshan & Meng, Xianjun, 2020. "A double-layer planning method for integrated community energy systems with varying energy conversion efficiencies," Applied Energy, Elsevier, vol. 279(C).
    15. Ghahramani, Mehrdad & Nazari-Heris, Morteza & Zare, Kazem & Mohammadi-Ivatloo, Behnam, 2022. "A two-point estimate approach for energy management of multi-carrier energy systems incorporating demand response programs," Energy, Elsevier, vol. 249(C).
    16. Jianan Liu & Hao Yu & Haoran Ji & Kunpeng Zhao & Chaoxian Lv & Peng Li, 2020. "Optimal Operation Strategy of a Community Integrated Energy System Constrained by the Seasonal Balance of Ground Source Heat Pumps," Sustainability, MDPI, vol. 12(11), pages 1-24, June.
    17. Cristina Acosta & Mariana Ortega & Till Bunsen & Binod Prasad Koirala & Amineh Ghorbani, 2018. "Facilitating Energy Transition through Energy Commons: An Application of Socio-Ecological Systems Framework for Integrated Community Energy Systems," Sustainability, MDPI, vol. 10(2), pages 1-15, January.
    18. Lv, Chaoxian & Yu, Hao & Li, Peng & Wang, Chengshan & Xu, Xiandong & Li, Shuquan & Wu, Jianzhong, 2019. "Model predictive control based robust scheduling of community integrated energy system with operational flexibility," Applied Energy, Elsevier, vol. 243(C), pages 250-265.
    19. Ottavia Valentini & Nikoleta Andreadou & Paolo Bertoldi & Alexandre Lucas & Iolanda Saviuc & Evangelos Kotsakis, 2022. "Demand Response Impact Evaluation: A Review of Methods for Estimating the Customer Baseline Load," Energies, MDPI, vol. 15(14), pages 1-36, July.
    20. Lin, Wei & Jin, Xiaolong & Jia, Hongjie & Mu, Yunfei & Xu, Tao & Xu, Xiandong & Yu, Xiaodan, 2021. "Decentralized optimal scheduling for integrated community energy system via consensus-based alternating direction method of multipliers," Applied Energy, Elsevier, vol. 302(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:330:y:2023:i:pa:s0306261922015355. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.