IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v371y2024ics0306261924010237.html
   My bibliography  Save this article

Design of P2P trading mechanism for multi-energy prosumers based on generalized nash bargaining in GCT-CET market

Author

Listed:
  • Meng, Yuxiang
  • Ma, Gang
  • Ye, Yujian
  • Yao, Yunting
  • Li, Weikang
  • Li, Tianyu

Abstract

Under the background of green certificate trading (GCT)‑carbon emission trading (CET) market, the application of P2P trading in regional integrated energy system (RIES) has not been fully explored, and it is urgent to design a reasonable prosumer P2P trading mechanism to adapt to the development of diversified electricity market. Therefore, this paper proposes a prosumer P2P cooperative trading model based on generalized Nash bargaining. Specifically, based on the differential modeling of various types of prosumers, this paper constructs a prosumer P2P cooperative trading model based on generalized Nash bargaining theory, and quantifies the bargaining power of prosumers through the contribution value of interactive operation. The GCT-CET collaborative mechanism is introduced to promote the consumption of distributed energy by transforming carbon quotas through green certificates. In addition, this paper designs a warm start and adaptive step alternating direction multiplier method decentralized algorithm (WAS-ADMM) to improve the solution efficiency and protect the trading privacy of prosumers. Through a case study, it analyzes the impact of prosumers' P2P cooperative trading on the consumption of distributed energy, prosumers' GCT-CET costs and comprehensive costs in the context of GCT and CET market. The simulation results show that the proposed trading model reduces the GCT-CET costs of the prosumers' alliance by about 24.98%.

Suggested Citation

  • Meng, Yuxiang & Ma, Gang & Ye, Yujian & Yao, Yunting & Li, Weikang & Li, Tianyu, 2024. "Design of P2P trading mechanism for multi-energy prosumers based on generalized nash bargaining in GCT-CET market," Applied Energy, Elsevier, vol. 371(C).
  • Handle: RePEc:eee:appene:v:371:y:2024:i:c:s0306261924010237
    DOI: 10.1016/j.apenergy.2024.123640
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924010237
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123640?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tushar, Wayes & Saha, Tapan Kumar & Yuen, Chau & Morstyn, Thomas & McCulloch, Malcolm D. & Poor, H. Vincent & Wood, Kristin L., 2019. "A motivational game-theoretic approach for peer-to-peer energy trading in the smart grid," Applied Energy, Elsevier, vol. 243(C), pages 10-20.
    2. Li, Junkai & Ge, Shaoyun & Xu, Zhengyang & Liu, Hong & Li, Jifeng & Wang, Chengshan & Cheng, Xueying, 2023. "A network-secure peer-to-peer trading framework for electricity-carbon integrated market among local prosumers," Applied Energy, Elsevier, vol. 335(C).
    3. Zhang, Xinyue & Guo, Xiaopeng & Zhang, Xingping, 2023. "Assessing the policy synergy among power, carbon emissions trading and tradable green certificate market mechanisms on strategic GENCOs in China," Energy, Elsevier, vol. 278(PB).
    4. Wu, Min & Xu, Jiazhu & Zeng, Linjun & Li, Chang & Liu, Yuxing & Yi, Yuqin & Wen, Ming & Jiang, Zhuohan, 2022. "Two-stage robust optimization model for park integrated energy system based on dynamic programming," Applied Energy, Elsevier, vol. 308(C).
    5. Zhao, Bingxu & Duan, Pengfei & Fen, Mengdan & Xue, Qingwen & Hua, Jing & Yang, Zhuoqiang, 2023. "Optimal operation of distribution networks and multiple community energy prosumers based on mixed game theory," Energy, Elsevier, vol. 278(PB).
    6. Boots, M., 2003. "Green certificates and carbon trading in the Netherlands," Energy Policy, Elsevier, vol. 31(1), pages 43-50, January.
    7. Jing, Rui & Xie, Mei Na & Wang, Feng Xiang & Chen, Long Xiang, 2020. "Fair P2P energy trading between residential and commercial multi-energy systems enabling integrated demand-side management," Applied Energy, Elsevier, vol. 262(C).
    8. Chen, Yihsu & Tanaka, Makoto & Takashima, Ryuta, 2023. "Death spiral, transmission charges, and prosumers in the electricity market," Applied Energy, Elsevier, vol. 332(C).
    9. Gao, Hongjun & Zhao, Yinbo & He, Shuaijia & Liu, Junyong, 2023. "Demand response management of community integrated energy system: A multi-energy retail package perspective," Applied Energy, Elsevier, vol. 330(PA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xie, Xuehua & Qian, Tong & Li, Weiwei & Tang, Wenhu & Xu, Zhao, 2024. "An individualized adaptive distributed approach for fast energy-carbon coordination in transactive multi-community integrated energy systems considering power transformer loading capacity," Applied Energy, Elsevier, vol. 375(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bożena Gajdzik & Magdalena Jaciow & Radosław Wolniak & Robert Wolny & Wieslaw Wes Grebski, 2023. "Assessment of Energy and Heat Consumption Trends and Forecasting in the Small Consumer Sector in Poland Based on Historical Data," Resources, MDPI, vol. 12(9), pages 1-33, September.
    2. García-Muñoz, Fernando & Dávila, Sebastián & Quezada, Franco, 2023. "A Benders decomposition approach for solving a two-stage local energy market problem under uncertainty," Applied Energy, Elsevier, vol. 329(C).
    3. Soto, Esteban A. & Bosman, Lisa B. & Wollega, Ebisa & Leon-Salas, Walter D., 2021. "Peer-to-peer energy trading: A review of the literature," Applied Energy, Elsevier, vol. 283(C).
    4. Zhang, Bidan & Du, Yang & Chen, Xiaoyang & Lim, Eng Gee & Jiang, Lin & Yan, Ke, 2022. "A novel adaptive penalty mechanism for Peer-to-Peer energy trading," Applied Energy, Elsevier, vol. 327(C).
    5. Javier Parra-Domínguez & Esteban Sánchez & Ángel Ordóñez, 2023. "The Prosumer: A Systematic Review of the New Paradigm in Energy and Sustainable Development," Sustainability, MDPI, vol. 15(13), pages 1-44, July.
    6. Azim, M. Imran & Tushar, Wayes & Saha, Tapan K. & Yuen, Chau & Smith, David, 2022. "Peer-to-peer kilowatt and negawatt trading: A review of challenges and recent advances in distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    7. Wang, Ni & Liu, Ziyi & Heijnen, Petra & Warnier, Martijn, 2022. "A peer-to-peer market mechanism incorporating multi-energy coupling and cooperative behaviors," Applied Energy, Elsevier, vol. 311(C).
    8. Bożena Gajdzik & Magdalena Jaciow & Radosław Wolniak & Robert Wolny & Wieslaw Wes Grebski, 2023. "Energy Behaviors of Prosumers in Example of Polish Households," Energies, MDPI, vol. 16(7), pages 1-26, March.
    9. Khan, Saad Salman & Ahmad, Sadiq & Naeem, Muhammad, 2023. "On-grid joint energy management and trading in uncertain environment," Applied Energy, Elsevier, vol. 330(PB).
    10. Zhang, Sen & Hu, Weihao & Cao, Xilin & Du, Jialin & Zhao, Yincheng & Bai, Chunguang & Liu, Wen & Tang, Ming & Zhan, Wei & Chen, Zhe, 2024. "A two-stage robust low-carbon operation strategy for interconnected distributed energy systems considering source-load uncertainty," Applied Energy, Elsevier, vol. 368(C).
    11. Meritxell Domènech Monfort & César De Jesús & Natapon Wanapinit & Niklas Hartmann, 2022. "A Review of Peer-to-Peer Energy Trading with Standard Terminology Proposal and a Techno-Economic Characterisation Matrix," Energies, MDPI, vol. 15(23), pages 1-29, November.
    12. Tushar, Wayes & Yuen, Chau & Saha, Tapan K. & Morstyn, Thomas & Chapman, Archie C. & Alam, M. Jan E. & Hanif, Sarmad & Poor, H. Vincent, 2021. "Peer-to-peer energy systems for connected communities: A review of recent advances and emerging challenges," Applied Energy, Elsevier, vol. 282(PA).
    13. Gržanić, M. & Capuder, T. & Zhang, N. & Huang, W., 2022. "Prosumers as active market participants: A systematic review of evolution of opportunities, models and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    14. Zhang, Bidan & He, Guannan & Du, Yang & Wen, Haoran & Huan, Xintao & Xing, Bowen & Huang, Jingsi, 2024. "Assessment of the economic impact of forecasting errors in Peer-to-Peer energy trading," Applied Energy, Elsevier, vol. 374(C).
    15. Tsao, Yu-Chung & Ai, Ho Thi Thu & Lu, Jye-Chyi & Wang, Chao, 2024. "Game theory-based electricity pricing decisions incorporating prosumer energy preferences and renewable portfolio standard," Energy, Elsevier, vol. 306(C).
    16. Zhihan Shi & Weisong Han & Guangming Zhang & Zhiqing Bai & Mingxiang Zhu & Xiaodong Lv, 2022. "Research on Low-Carbon Energy Sharing through the Alliance of Integrated Energy Systems with Multiple Uncertainties," Energies, MDPI, vol. 15(24), pages 1-20, December.
    17. Zhou, Yuekuan & Lund, Peter D., 2023. "Peer-to-peer energy sharing and trading of renewable energy in smart communities ─ trading pricing models, decision-making and agent-based collaboration," Renewable Energy, Elsevier, vol. 207(C), pages 177-193.
    18. Zhang, Zhonglian & Yang, Xiaohui & Li, Moxuan & Deng, Fuwei & Xiao, Riying & Mei, Linghao & Hu, Zecheng, 2023. "Optimal configuration of improved dynamic carbon neutral energy systems based on hybrid energy storage and market incentives," Energy, Elsevier, vol. 284(C).
    19. Wu, Chun & Chen, Xingying & Hua, Haochen & Yu, Kun & Gan, Lei & Shen, Jun & Ding, Yi, 2024. "Peer-to-peer energy trading optimization for community prosumers considering carbon cap-and-trade," Applied Energy, Elsevier, vol. 358(C).
    20. Lyu, Cheng & Jia, Youwei & Xu, Zhao, 2021. "Fully decentralized peer-to-peer energy sharing framework for smart buildings with local battery system and aggregated electric vehicles," Applied Energy, Elsevier, vol. 299(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:371:y:2024:i:c:s0306261924010237. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.