Review of HVAC Systems History and Future Applications
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Yang, Shiyu & Wan, Man Pun & Chen, Wanyu & Ng, Bing Feng & Dubey, Swapnil, 2020. "Model predictive control with adaptive machine-learning-based model for building energy efficiency and comfort optimization," Applied Energy, Elsevier, vol. 271(C).
- Du, Yan & Zandi, Helia & Kotevska, Olivera & Kurte, Kuldeep & Munk, Jeffery & Amasyali, Kadir & Mckee, Evan & Li, Fangxing, 2021. "Intelligent multi-zone residential HVAC control strategy based on deep reinforcement learning," Applied Energy, Elsevier, vol. 281(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jonghoon Ahn, 2023. "An Adaptive Control Model for Thermal Environmental Factors to Supplement the Sustainability of a Small-Sized Factory," Sustainability, MDPI, vol. 15(24), pages 1-15, December.
- Amal Azzi & Mohamed Tabaa & Badr Chegari & Hanaa Hachimi, 2024. "Balancing Sustainability and Comfort: A Holistic Study of Building Control Strategies That Meet the Global Standards for Efficiency and Thermal Comfort," Sustainability, MDPI, vol. 16(5), pages 1-36, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Panagiotis Michailidis & Iakovos Michailidis & Dimitrios Vamvakas & Elias Kosmatopoulos, 2023. "Model-Free HVAC Control in Buildings: A Review," Energies, MDPI, vol. 16(20), pages 1-45, October.
- Liu, Xiaoqi & Lee, Seungjae & Bilionis, Ilias & Karava, Panagiota & Joe, Jaewan & Sadeghi, Seyed Amir, 2021. "A user-interactive system for smart thermal environment control in office buildings," Applied Energy, Elsevier, vol. 298(C).
- Gao, Datong & Zhao, Bin & Kwan, Trevor Hocksun & Hao, Yong & Pei, Gang, 2022. "The spatial and temporal mismatch phenomenon in solar space heating applications: status and solutions," Applied Energy, Elsevier, vol. 321(C).
- Wang, Yi & Qiu, Dawei & Sun, Mingyang & Strbac, Goran & Gao, Zhiwei, 2023. "Secure energy management of multi-energy microgrid: A physical-informed safe reinforcement learning approach," Applied Energy, Elsevier, vol. 335(C).
- Sun, Hongchang & Niu, Yanlei & Li, Chengdong & Zhou, Changgeng & Zhai, Wenwen & Chen, Zhe & Wu, Hao & Niu, Lanqiang, 2022. "Energy consumption optimization of building air conditioning system via combining the parallel temporal convolutional neural network and adaptive opposition-learning chimp algorithm," Energy, Elsevier, vol. 259(C).
- Hu, Guoqing & You, Fengqi, 2024. "AI-enabled cyber-physical-biological systems for smart energy management and sustainable food production in a plant factory," Applied Energy, Elsevier, vol. 356(C).
- Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
- Amir Faraji & Maria Rashidi & Fatemeh Rezaei & Payam Rahnamayiezekavat, 2023. "A Meta-Synthesis Review of Occupant Comfort Assessment in Buildings (2002–2022)," Sustainability, MDPI, vol. 15(5), pages 1-36, February.
- Giacomo Segala & Roberto Doriguzzi-Corin & Claudio Peroni & Matteo Gerola & Domenico Siracusa, 2023. "EECO: An AI-Based Algorithm for Energy-Efficient Comfort Optimisation," Energies, MDPI, vol. 16(21), pages 1-28, October.
- Zeyue Sun & Mohsen Eskandari & Chaoran Zheng & Ming Li, 2022. "Handling Computation Hardness and Time Complexity Issue of Battery Energy Storage Scheduling in Microgrids by Deep Reinforcement Learning," Energies, MDPI, vol. 16(1), pages 1-20, December.
- Zhang, Bin & Hu, Weihao & Ghias, Amer M.Y.M. & Xu, Xiao & Chen, Zhe, 2022. "Multi-agent deep reinforcement learning-based coordination control for grid-aware multi-buildings," Applied Energy, Elsevier, vol. 328(C).
- M. Usman Saleem & Mustafa Shakir & M. Rehan Usman & M. Hamza Tahir Bajwa & Noman Shabbir & Payam Shams Ghahfarokhi & Kamran Daniel, 2023. "Integrating Smart Energy Management System with Internet of Things and Cloud Computing for Efficient Demand Side Management in Smart Grids," Energies, MDPI, vol. 16(12), pages 1-21, June.
- Charalampos Rafail Lazaridis & Iakovos Michailidis & Georgios Karatzinis & Panagiotis Michailidis & Elias Kosmatopoulos, 2024. "Evaluating Reinforcement Learning Algorithms in Residential Energy Saving and Comfort Management," Energies, MDPI, vol. 17(3), pages 1-33, January.
- Qing Yin & Chunmiao Han & Ailin Li & Xiao Liu & Ying Liu, 2024. "A Review of Research on Building Energy Consumption Prediction Models Based on Artificial Neural Networks," Sustainability, MDPI, vol. 16(17), pages 1-30, September.
- Yang, Shiyu & Wan, Man Pun & Chen, Wanyu & Ng, Bing Feng & Dubey, Swapnil, 2021. "Experiment study of machine-learning-based approximate model predictive control for energy-efficient building control," Applied Energy, Elsevier, vol. 288(C).
- Boza, Pal & Evgeniou, Theodoros, 2021. "Artificial intelligence to support the integration of variable renewable energy sources to the power system," Applied Energy, Elsevier, vol. 290(C).
- Amasyali, Kadir & El-Gohary, Nora M., 2021. "Real data-driven occupant-behavior optimization for reduced energy consumption and improved comfort," Applied Energy, Elsevier, vol. 302(C).
- Wang, Qiaochu & Ding, Yan & Kong, Xiangfei & Tian, Zhe & Xu, Linrui & He, Qing, 2022. "Load pattern recognition based optimization method for energy flexibility in office buildings," Energy, Elsevier, vol. 254(PC).
- Angizeh, Farhad & Ghofrani, Ali & Zaidan, Esmat & Jafari, Mohsen A., 2022. "Adaptable scheduling of smart building communities with thermal mapping and demand flexibility," Applied Energy, Elsevier, vol. 310(C).
- Dalia Mohammed Talat Ebrahim Ali & Violeta Motuzienė & Rasa Džiugaitė-Tumėnienė, 2024. "AI-Driven Innovations in Building Energy Management Systems: A Review of Potential Applications and Energy Savings," Energies, MDPI, vol. 17(17), pages 1-35, August.
More about this item
Keywords
HVAC; heating; cooling; deep learning; artificial intelligence;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6109-:d:1222266. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.