IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v324y2022ics030626192200993x.html
   My bibliography  Save this article

Diode model of nonuniform irradiation treatment to predict multiscale solar-electrical conversion for the concentrating plasmonic photovoltaic system

Author

Listed:
  • Zhang, J.J.
  • Qu, Z.G.
  • Zhang, J.F.

Abstract

Optical concentrators and plasmonic nanostructured surfaces are promising methods to increase the solar irradiation density and enhance light absorption. The combined application of these two methods for solar cells faces challenges of multiscale solar-electrical conversions, especially the treatment of nonuniform irradiation. A multiscale multiphysics method is proposed to predict the electrical outputs of a concentrating plasmonic photovoltaic (CPV) system. In the model, a series-connected diode global model for concentrating-plasmonic-electrical conversion combined with a local one-unit diode for fully coupled optical-thermal-electrical conversion is employed to treat nonuniform concentrating irradiation. The one-unit diode model is calibrated by J-V curve fitting with the local fully coupled optical-thermal-electrical model to characterize the wavelength-dependent light absorption and charge carrier behaviors. An explicit formula is proposed to consider the influences of concentrating irradiation and plasmonic nanostructures. The feasibility of the calibrated one-unit diode under concentration ratios is validated with the maximum power compared to an experimental GaAs-based solar cell under concentrated sunlight. The electrical outputs of the plasmonic solar cell under nonuniform irradiation is obtained by the equivalent circuit with series-connected diodes. Each of the diodes yields a photogenerated current in its individual state, whereas the equivalent series-connected circuit has a reformulated homogeneous current. The cross current of the series-connected circuit is mainly determined by the solar cell zone with the lowest concentration ratio. The method with a uniform one-sun irradiation assumption in the entire solar cell surface can overestimate its working current before the declining point and can underestimate the open-circuit voltage. The concentration enhances the photogenerated current but induces auxiliary series resistance. The maximum power is a trade-off of the improved photogenerated current and unfavorable series resistance. This work provides theoretical guidance for large-scale engineering applications of CPV systems with nanostructured solar cells.

Suggested Citation

  • Zhang, J.J. & Qu, Z.G. & Zhang, J.F., 2022. "Diode model of nonuniform irradiation treatment to predict multiscale solar-electrical conversion for the concentrating plasmonic photovoltaic system," Applied Energy, Elsevier, vol. 324(C).
  • Handle: RePEc:eee:appene:v:324:y:2022:i:c:s030626192200993x
    DOI: 10.1016/j.apenergy.2022.119698
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192200993X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119698?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Ya-Ling & Xiao, Jie & Cheng, Ze-Dong & Tao, Yu-Bing, 2011. "A MCRT and FVM coupled simulation method for energy conversion process in parabolic trough solar collector," Renewable Energy, Elsevier, vol. 36(3), pages 976-985.
    2. Zhou, Yi-Peng & He, Ya-Ling & Qiu, Yu & Ren, Qinlong & Xie, Tao, 2017. "Multi-scale investigation on the absorbed irradiance distribution of the nanostructured front surface of the concentrated PV-TE device by a MC-FDTD coupled method," Applied Energy, Elsevier, vol. 207(C), pages 18-26.
    3. Wang, Ao & Xuan, Yimin, 2020. "Multiscale prediction of localized hot-spot phenomena in solar cells," Renewable Energy, Elsevier, vol. 146(C), pages 1292-1300.
    4. Zhang, J.J. & Qu, Z.G. & Maharjan, A., 2019. "Numerical investigation of coupled optical-electrical-thermal processes for plasmonic solar cells at various angles of incident irradiance," Energy, Elsevier, vol. 174(C), pages 110-121.
    5. Baig, Hasan & Heasman, Keith C. & Mallick, Tapas K., 2012. "Non-uniform illumination in concentrating solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5890-5909.
    6. Zhang, J.J. & Qu, Z.G. & Zhang, J.F. & Maharjan, A., 2021. "A three-dimensional numerical study of coupled photothermal and photoelectrical processes for plasmonic solar cells with nanoparticles," Renewable Energy, Elsevier, vol. 165(P1), pages 278-287.
    7. Rezania, A. & Rosendahl, L.A., 2017. "Feasibility and parametric evaluation of hybrid concentrated photovoltaic-thermoelectric system," Applied Energy, Elsevier, vol. 187(C), pages 380-389.
    8. Zahedi, A., 2011. "Review of modelling details in relation to low-concentration solar concentrating photovoltaic," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1609-1614, April.
    9. Chong, Kok-Keong & Lau, Sing-Liong & Yew, Tiong-Keat & Tan, Philip Chee-Lin, 2013. "Design and development in optics of concentrator photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 598-612.
    10. Ju, Xing & Pan, Xinyu & Zhang, Zheyang & Xu, Chao & Wei, Gaosheng, 2019. "Thermal and electrical performance of the dense-array concentrating photovoltaic (DA-CPV) system under non-uniform illumination," Applied Energy, Elsevier, vol. 250(C), pages 904-915.
    11. Vossier, Alexis & Chemisana, Daniel & Flamant, Gilles & Dollet, Alain, 2012. "Very high fluxes for concentrating photovoltaics: Considerations from simple experiments and modeling," Renewable Energy, Elsevier, vol. 38(1), pages 31-39.
    12. Qu, Wanjun & Xing, Xueli & Cao, Yali & Liu, Taixiu & Hong, Hui & Jin, Hongguang, 2020. "A concentrating solar power system integrated photovoltaic and mid-temperature solar thermochemical processes," Applied Energy, Elsevier, vol. 262(C).
    13. Humada, Ali M. & Hojabri, Mojgan & Mekhilef, Saad & Hamada, Hussein M., 2016. "Solar cell parameters extraction based on single and double-diode models: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 494-509.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yadav, Pankaj & Tripathi, Brijesh & Rathod, Siddharth & Kumar, Manoj, 2013. "Real-time analysis of low-concentration photovoltaic systems: A review towards development of sustainable energy technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 812-823.
    2. Amanlou, Yasaman & Hashjin, Teymour Tavakoli & Ghobadian, Barat & Najafi, G. & Mamat, R., 2016. "A comprehensive review of Uniform Solar Illumination at Low Concentration Photovoltaic (LCPV) Systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1430-1441.
    3. Zhou, Yi-Peng & Li, Ming-Jia & Yang, Wei-Wei & He, Ya-Ling, 2018. "The effect of the full-spectrum characteristics of nanostructure on the PV-TE hybrid system performances within multi-physics coupling process," Applied Energy, Elsevier, vol. 213(C), pages 169-178.
    4. Zhou, Yi-Peng & Li, Ming-Jia & Hu, Yi-Huang & Ma, Teng, 2020. "Design and experimental investigation of a novel full solar spectrum utilization system," Applied Energy, Elsevier, vol. 260(C).
    5. Ju, Xing & Abd El-Samie, Mostafa M. & Xu, Chao & Yu, Hangyu & Pan, Xinyu & Yang, Yongping, 2020. "A fully coupled numerical simulation of a hybrid concentrated photovoltaic/thermal system that employs a therminol VP-1 based nanofluid as a spectral beam filter," Applied Energy, Elsevier, vol. 264(C).
    6. Ustaoglu, Abid & Ozbey, Umut & Torlaklı, Hande, 2020. "Numerical investigation of concentrating photovoltaic/thermal (CPV/T) system using compound hyperbolic –trumpet, V-trough and compound parabolic concentrators," Renewable Energy, Elsevier, vol. 152(C), pages 1192-1208.
    7. Majedul Islam & Prasad Yarlagadda & Azharul Karim, 2018. "Effect of the Orientation Schemes of the Energy Collection Element on the Optical Performance of a Parabolic Trough Concentrating Collector," Energies, MDPI, vol. 12(1), pages 1-20, December.
    8. Liang, Qi & He, Ya-Ling & Ren, Qinlong & Zhou, Yi-Peng & Xie, Tao, 2018. "A detailed study on phonon transport in thin silicon membranes with phononic crystal nanostructures," Applied Energy, Elsevier, vol. 227(C), pages 731-741.
    9. Qiu, Yu & Li, Ming-Jia & Wang, Kun & Liu, Zhan-Bin & Xue, Xiao-Dai, 2017. "Aiming strategy optimization for uniform flux distribution in the receiver of a linear Fresnel solar reflector using a multi-objective genetic algorithm," Applied Energy, Elsevier, vol. 205(C), pages 1394-1407.
    10. Ge, Minghui & Zhao, Yuntong & Li, Yanzhe & He, Wei & Xie, Liyao & Zhao, Yulong, 2022. "Structural optimization of thermoelectric modules in a concentration photovoltaic–thermoelectric hybrid system," Energy, Elsevier, vol. 244(PB).
    11. Zhou, Yi-Peng & He, Ya-Ling & Qiu, Yu & Ren, Qinlong & Xie, Tao, 2017. "Multi-scale investigation on the absorbed irradiance distribution of the nanostructured front surface of the concentrated PV-TE device by a MC-FDTD coupled method," Applied Energy, Elsevier, vol. 207(C), pages 18-26.
    12. Pan, Xinyu & Ju, Xing & Yuan, Mengdi & Xu, Chao & Du, Xiaoze, 2023. "Energy tracing of solar cells for spectral-beam-splitting photovoltaic/thermal (PVT) systems," Applied Energy, Elsevier, vol. 345(C).
    13. Renzi, Massimiliano & Cioccolanti, Luca & Barazza, Giorgio & Egidi, Lorenzo & Comodi, Gabriele, 2017. "Design and experimental test of refractive secondary optics on the electrical performance of a 3-junction cell used in CPV systems," Applied Energy, Elsevier, vol. 185(P1), pages 233-243.
    14. He, Ya-Ling & Zhou, Yi-Peng & Hu, Yi-huang & Hung, Tzu-Chen, 2020. "A multiscale-multiphysics integrated model to investigate the coupling effects of non-uniform illumination on concentrated photovoltaic system with nanostructured front surface," Applied Energy, Elsevier, vol. 257(C).
    15. Perez-Enciso, Ricardo & Gallo, Alessandro & Riveros-Rosas, David & Fuentealba-Vidal, Edward & Perez-Rábago, Carlos, 2016. "A simple method to achieve a uniform flux distribution in a multi-faceted point focus concentrator," Renewable Energy, Elsevier, vol. 93(C), pages 115-124.
    16. Cameron, William James & Reddy, K. Srinivas & Mallick, Tapas Kumar, 2022. "Review of high concentration photovoltaic thermal hybrid systems for highly efficient energy cogeneration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    17. Qu, Wanjun & Hong, Hui & Jin, Hongguang, 2019. "A spectral splitting solar concentrator for cascading solar energy utilization by integrating photovoltaics and solar thermal fuel," Applied Energy, Elsevier, vol. 248(C), pages 162-173.
    18. Zhou, Yi-Peng & He, Ya-Ling & Tong, Zi-Xiang & Liu, Zhan-Bin, 2019. "Multi-physics coupling effects of nanostructure characteristics on the all-back-contact silicon solar cell performances," Applied Energy, Elsevier, vol. 236(C), pages 127-136.
    19. He, Ya-Ling & Qiu, Yu & Wang, Kun & Yuan, Fan & Wang, Wen-Qi & Li, Ming-Jia & Guo, Jia-Qi, 2020. "Perspective of concentrating solar power," Energy, Elsevier, vol. 198(C).
    20. Sharaf, Omar Z. & Orhan, Mehmet F., 2015. "Concentrated photovoltaic thermal (CPVT) solar collector systems: Part I – Fundamentals, design considerations and current technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1500-1565.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:324:y:2022:i:c:s030626192200993x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.