IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v257y2020ics0306261919316587.html
   My bibliography  Save this article

A multiscale-multiphysics integrated model to investigate the coupling effects of non-uniform illumination on concentrated photovoltaic system with nanostructured front surface

Author

Listed:
  • He, Ya-Ling
  • Zhou, Yi-Peng
  • Hu, Yi-huang
  • Hung, Tzu-Chen

Abstract

Nanostructured front surface and concentrator can improve the photovoltaic performance by absorbing and concentrating more solar light. However, they lead to the non-uniform distribution of the absorbed solar radiation (Ia), which has a great influence on the concentrated photovoltaic (CPV) system. In CPV system with nanostructured front surface, there are the complicated multiscale-multiphysics processes, which include geometrical optics (concentrator), near-field optics (nanostructured front surface), photoelectric conversion (photovoltaics), and heat transfer (photovoltaic module). Hence, a multiscale-multiphysics integrated mathematical model is developed and applied in the physical model of a CPV system, which employs a linear Fresnel lens and a photovoltaics with the moth-eye nanostructured front surface. Six kinds of surface structures with different anti-reflection characteristics are chosen in this study. Investigation found that, with the decrease of the average reflectance of the nanostructure, the multiscale-multiphysics effects of the non-uniform Ia on the photovoltaic characteristics are enhanced. Moreover, the higher temperature difference caused by the nanostructure with lower reflectance is one of the most important reasons for the difference between photovoltaic characteristics for the non-uniform Ia and uniform Ia. Therefore, the nanostructures with lower reflectance are not definitely good for CPV system. In order to reduce the effects of photovoltaic temperature with non-uniform distribution, it has been studied that the variation of the CPV performance with the bottom convective heat transfer coefficient (hb). It is found that when the reflectance of nanostructure is too low, the multiscale-multiphysics effect of non-uniformity Ia is enhanced as the uniform hb increases, the “turning” point of temperature appears, which is caused by the non-uniform distribution of temperature. Finally, a normal distribution of the hb is applied for reducing temperature difference. It is found that, with the increase of the maximum in normal distribution of hb, the temperature difference does decrease, but the CPV performance decrease due to higher average temperature of CPV. Therefore, the design of cooling system for CPV system should focus on the cooling capacity rather than the distribution.

Suggested Citation

  • He, Ya-Ling & Zhou, Yi-Peng & Hu, Yi-huang & Hung, Tzu-Chen, 2020. "A multiscale-multiphysics integrated model to investigate the coupling effects of non-uniform illumination on concentrated photovoltaic system with nanostructured front surface," Applied Energy, Elsevier, vol. 257(C).
  • Handle: RePEc:eee:appene:v:257:y:2020:i:c:s0306261919316587
    DOI: 10.1016/j.apenergy.2019.113971
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919316587
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.113971?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Ya-Ling & Xiao, Jie & Cheng, Ze-Dong & Tao, Yu-Bing, 2011. "A MCRT and FVM coupled simulation method for energy conversion process in parabolic trough solar collector," Renewable Energy, Elsevier, vol. 36(3), pages 976-985.
    2. Zhou, Yi-Peng & He, Ya-Ling & Qiu, Yu & Ren, Qinlong & Xie, Tao, 2017. "Multi-scale investigation on the absorbed irradiance distribution of the nanostructured front surface of the concentrated PV-TE device by a MC-FDTD coupled method," Applied Energy, Elsevier, vol. 207(C), pages 18-26.
    3. Zhou, Yi-Peng & Li, Ming-Jia & Yang, Wei-Wei & He, Ya-Ling, 2018. "The effect of the full-spectrum characteristics of nanostructure on the PV-TE hybrid system performances within multi-physics coupling process," Applied Energy, Elsevier, vol. 213(C), pages 169-178.
    4. Zhou, Yi-Peng & He, Ya-Ling & Tong, Zi-Xiang & Liu, Zhan-Bin, 2019. "Multi-physics coupling effects of nanostructure characteristics on the all-back-contact silicon solar cell performances," Applied Energy, Elsevier, vol. 236(C), pages 127-136.
    5. Michael, Jee Joe & Iqbal, S. Mohamed & Iniyan, S. & Goic, Ranko, 2018. "Enhanced electrical performance in a solar photovoltaic module using V-trough concentrators," Energy, Elsevier, vol. 148(C), pages 605-613.
    6. Li, Guiqiang & Pei, Gang & Ji, Jie & Su, Yuehong, 2015. "Outdoor overall performance of a novel air-gap-lens-walled compound parabolic concentrator (ALCPC) incorporated with photovoltaic/thermal system," Applied Energy, Elsevier, vol. 144(C), pages 214-223.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Wen-Qi & Li, Ming-Jia & Jiang, Rui & Hu, Yi-Huang & He, Ya-Ling, 2022. "Receiver with light-trapping nanostructured coating: A possible way to achieve high-efficiency solar thermal conversion for the next-generation concentrating solar power," Renewable Energy, Elsevier, vol. 185(C), pages 159-171.
    2. Zhang, J.J. & Qu, Z.G. & Zhang, J.F., 2022. "MCRT-FDTD investigation of the solar-plasmonic-electrical conversion for uniform irradiation in a spectral splitting CPVT system," Applied Energy, Elsevier, vol. 315(C).
    3. Barbón, A. & Fortuny Ayuso, P. & Bayón, L. & Fernández-Rubiera, J.A., 2022. "Non-uniform illumination in low concentration photovoltaic systems based on small-scale linear Fresnel reflectors," Energy, Elsevier, vol. 239(PC).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Yi-Peng & Li, Ming-Jia & Hu, Yi-Huang & Ma, Teng, 2020. "Design and experimental investigation of a novel full solar spectrum utilization system," Applied Energy, Elsevier, vol. 260(C).
    2. Zhou, Yi-Peng & He, Ya-Ling & Tong, Zi-Xiang & Liu, Zhan-Bin, 2019. "Multi-physics coupling effects of nanostructure characteristics on the all-back-contact silicon solar cell performances," Applied Energy, Elsevier, vol. 236(C), pages 127-136.
    3. Faisal Masood & Nursyarizal Bin Mohd Nor & Perumal Nallagownden & Irraivan Elamvazuthi & Rahman Saidur & Mohammad Azad Alam & Javed Akhter & Mohammad Yusuf & Mubbashar Mehmood & Mujahid Ali, 2022. "A Review of Recent Developments and Applications of Compound Parabolic Concentrator-Based Hybrid Solar Photovoltaic/Thermal Collectors," Sustainability, MDPI, vol. 14(9), pages 1-30, May.
    4. Liang, Qi & He, Ya-Ling & Ren, Qinlong & Zhou, Yi-Peng & Xie, Tao, 2018. "A detailed study on phonon transport in thin silicon membranes with phononic crystal nanostructures," Applied Energy, Elsevier, vol. 227(C), pages 731-741.
    5. Qiu, Yu & Li, Ming-Jia & Wang, Kun & Liu, Zhan-Bin & Xue, Xiao-Dai, 2017. "Aiming strategy optimization for uniform flux distribution in the receiver of a linear Fresnel solar reflector using a multi-objective genetic algorithm," Applied Energy, Elsevier, vol. 205(C), pages 1394-1407.
    6. Li, Guiqiang & Shittu, Samson & Diallo, Thierno M.O. & Yu, Min & Zhao, Xudong & Ji, Jie, 2018. "A review of solar photovoltaic-thermoelectric hybrid system for electricity generation," Energy, Elsevier, vol. 158(C), pages 41-58.
    7. Arias-Rosales, Andrés & Mejía-Gutiérrez, Ricardo, 2018. "Optimization of V-Trough photovoltaic concentrators through genetic algorithms with heuristics based on Weibull distributions," Applied Energy, Elsevier, vol. 212(C), pages 122-140.
    8. Zhou, Yi-Peng & Li, Ming-Jia & Yang, Wei-Wei & He, Ya-Ling, 2018. "The effect of the full-spectrum characteristics of nanostructure on the PV-TE hybrid system performances within multi-physics coupling process," Applied Energy, Elsevier, vol. 213(C), pages 169-178.
    9. He, Ya-Ling & Qiu, Yu & Wang, Kun & Yuan, Fan & Wang, Wen-Qi & Li, Ming-Jia & Guo, Jia-Qi, 2020. "Perspective of concentrating solar power," Energy, Elsevier, vol. 198(C).
    10. Ma, Zhao & Yang, Wei-Wei & Li, Ming-Jia & He, Ya-Ling, 2018. "High efficient solar parabolic trough receiver reactors combined with phase change material for thermochemical reactions," Applied Energy, Elsevier, vol. 230(C), pages 769-783.
    11. Zhang, J.J. & Qu, Z.G. & Zhang, J.F., 2022. "Diode model of nonuniform irradiation treatment to predict multiscale solar-electrical conversion for the concentrating plasmonic photovoltaic system," Applied Energy, Elsevier, vol. 324(C).
    12. Xu, Yang & Li, Ming-Jia & Zheng, Zhang-Jing & Xue, Xiao-Dai, 2018. "Melting performance enhancement of phase change material by a limited amount of metal foam: Configurational optimization and economic assessment," Applied Energy, Elsevier, vol. 212(C), pages 868-880.
    13. Bitam, El Wardi & Demagh, Yassine & Hachicha, Ahmed A. & Benmoussa, Hocine & Kabar, Yassine, 2018. "Numerical investigation of a novel sinusoidal tube receiver for parabolic trough technology," Applied Energy, Elsevier, vol. 218(C), pages 494-510.
    14. Mwesigye, Aggrey & Meyer, Josua P., 2017. "Optimal thermal and thermodynamic performance of a solar parabolic trough receiver with different nanofluids and at different concentration ratios," Applied Energy, Elsevier, vol. 193(C), pages 393-413.
    15. Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2018. "Optimal design method for concentrating photovoltaic-thermoelectric hybrid system," Applied Energy, Elsevier, vol. 226(C), pages 320-329.
    16. Chen, Haifei & Li, Guiqiang & Zhong, Yang & Wang, Yunjie & Cai, Baorui & Yang, Jie & Badiei, Ali & Zhang, Yang, 2021. "Exergy analysis of a high concentration photovoltaic and thermal system for comprehensive use of heat and electricity," Energy, Elsevier, vol. 225(C).
    17. Lei, Dongqiang & Fu, Xuqiang & Ren, Yucong & Yao, Fangyuan & Wang, Zhifeng, 2019. "Temperature and thermal stress analysis of parabolic trough receivers," Renewable Energy, Elsevier, vol. 136(C), pages 403-413.
    18. Ju, Xing & Abd El-Samie, Mostafa M. & Xu, Chao & Yu, Hangyu & Pan, Xinyu & Yang, Yongping, 2020. "A fully coupled numerical simulation of a hybrid concentrated photovoltaic/thermal system that employs a therminol VP-1 based nanofluid as a spectral beam filter," Applied Energy, Elsevier, vol. 264(C).
    19. Yang, S. & Sensoy, T.S. & Ordonez, J.C., 2018. "Dynamic 3D volume element model of a parabolic trough solar collector for simulation and optimization," Applied Energy, Elsevier, vol. 217(C), pages 509-526.
    20. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:257:y:2020:i:c:s0306261919316587. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.