IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v322y2022ics0306261922008388.html
   My bibliography  Save this article

Ground-based investigation of a directional, flexible, and wireless concentrated solar energy transmission system

Author

Listed:
  • Wang, Ji-Xiang
  • Zhong, Mingliang
  • Wu, Zhe
  • Guo, Mengyue
  • Liang, Xin
  • Qi, Bo

Abstract

Solar energy in space is more intensive and continuous compared to that on the Earth, and thus, is encouraged by governments across the world to be utilized for human beings. The continuity of the space sunlight has a great potential to overcome the bottleneck of the variability and intermittency in time and space for ground-based solar energy applications. Space solar power station (SSPS) is known as intermedia that can harvest the space solar energy and transmit it wirelessly to the end-user. However, the current wireless energy transmission via microwave or laser suffers from low energy transmission efficiency because of excessive energy conversion processes. Wireless energy transmission via sunlight without any intermediate energy conversion process was proposed previously theoretically for high energy transmission efficiency, but it also lacks practicability due to heavyweight and inflexibility. Therefore, although promising, practical sunlight-based wireless energy transmission proposals have not ever been presented. Here, through component and structure optimizations in theoretical and experimental approaches, a novel and more practical concentrated solar energy wireless transmission system that transmits the harvested sunlight via lightweight optical fibers is proposed in this paper. It uses a Fresnel lens to collect concentrated solar energy and then, the utilized optical fiber can steer the collected energy to the collimator flexibly. At last, a parallel sunlight beam can be emitted from the collimator to the target end-user. Results show that the transmitter efficiency versus optical fiber length exhibited a linear relationship from both theoretical and experimental approaches. the cloud effect harmed the energy transmission. A maximum transmitter energy transmission efficiency of 52.0% could be attained experimentally. Compared with the performance in the no-cloud condition, the gained voltage could be declined by 37% ∼ 48%. The bending of the optical fiber seemed to not affect much on the energy transmission performance, which guarantees a flexible energy transmission. Besides, the power/weight ratio was increased by 17.0% compared to its counterpart. The innovation of this paper is to reduce the gap between theoretical and practical feasibilities for the proposed system. This paper experimentally demonstrates the feasibility of a wireless concentrated solar energy transmission technology, which promotes the application of SSPS and related aerospace applications.

Suggested Citation

  • Wang, Ji-Xiang & Zhong, Mingliang & Wu, Zhe & Guo, Mengyue & Liang, Xin & Qi, Bo, 2022. "Ground-based investigation of a directional, flexible, and wireless concentrated solar energy transmission system," Applied Energy, Elsevier, vol. 322(C).
  • Handle: RePEc:eee:appene:v:322:y:2022:i:c:s0306261922008388
    DOI: 10.1016/j.apenergy.2022.119517
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922008388
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119517?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Tao & Li, Yiteng & Chen, Yin & Feng, Xiaoyu & Zhu, Xingyu & Chen, Zhangxing & Yao, Jun & Zheng, Yongchun & Cai, Jianchao & Song, Hongqing & Sun, Shuyu, 2021. "Review on space energy," Applied Energy, Elsevier, vol. 292(C).
    2. Meha, Drilon & Pfeifer, Antun & Sahiti, Naser & Rolph Schneider, Daniel & Duić, Neven, 2021. "Sustainable transition pathways with high penetration of variable renewable energy in the coal-based energy systems," Applied Energy, Elsevier, vol. 304(C).
    3. Topper, Mathew B.R. & Olson, Sterling S. & Roberts, Jesse D., 2021. "On the benefits of negative hydrodynamic interactions in small tidal energy arrays," Applied Energy, Elsevier, vol. 297(C).
    4. Bullich-Massagué, Eduard & Cifuentes-García, Francisco-Javier & Glenny-Crende, Ignacio & Cheah-Mañé, Marc & Aragüés-Peñalba, Mònica & Díaz-González, Francisco & Gomis-Bellmunt, Oriol, 2020. "A review of energy storage technologies for large scale photovoltaic power plants," Applied Energy, Elsevier, vol. 274(C).
    5. O'Shaughnessy, Eric & Cutler, Dylan & Ardani, Kristen & Margolis, Robert, 2018. "Solar plus: Optimization of distributed solar PV through battery storage and dispatchable load in residential buildings," Applied Energy, Elsevier, vol. 213(C), pages 11-21.
    6. Pietzcker, Robert C. & Osorio, Sebastian & Rodrigues, Renato, 2021. "Tightening EU ETS targets in line with the European Green Deal: Impacts on the decarbonization of the EU power sector," Applied Energy, Elsevier, vol. 293(C).
    7. Zhang, Chengbin & Li, Jie & Chen, Yongping, 2020. "Improving the energy discharging performance of a latent heat storage (LHS) unit using fractal-tree-shaped fins," Applied Energy, Elsevier, vol. 259(C).
    8. Coe, Ryan G. & Ahn, Seongho & Neary, Vincent S. & Kobos, Peter H. & Bacelli, Giorgio, 2021. "Maybe less is more: Considering capacity factor, saturation, variability, and filtering effects of wave energy devices," Applied Energy, Elsevier, vol. 291(C).
    9. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Peak of CO2 emissions in various sectors and provinces of China: Recent progress and avenues for further research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 813-833.
    10. Crippa, Paola & Alifa, Mariana & Bolster, Diogo & Genton, Marc G. & Castruccio, Stefano, 2021. "A temporal model for vertical extrapolation of wind speed and wind energy assessment," Applied Energy, Elsevier, vol. 301(C).
    11. Liu, Shuai & Wei, Li & Wang, Huai, 2020. "Review on reliability of supercapacitors in energy storage applications," Applied Energy, Elsevier, vol. 278(C).
    12. Aghahosseini, Arman & Breyer, Christian, 2020. "From hot rock to useful energy: A global estimate of enhanced geothermal systems potential," Applied Energy, Elsevier, vol. 279(C).
    13. Psarros, Georgios N. & Dratsas, Pantelis A. & Papathanassiou, Stavros A., 2021. "A comparison between central- and self-dispatch storage management principles in island systems," Applied Energy, Elsevier, vol. 298(C).
    14. Xianlin Qu & Yongcai He & Minghao Qu & Tianyu Ruan & Feihong Chu & Zilong Zheng & Yabin Ma & Yuanping Chen & Xiaoning Ru & Xixiang Xu & Hui Yan & Lihua Wang & Yongzhe Zhang & Xiaojing Hao & Ziv Hameir, 2021. "Identification of embedded nanotwins at c-Si/a-Si:H interface limiting the performance of high-efficiency silicon heterojunction solar cells," Nature Energy, Nature, vol. 6(2), pages 194-202, February.
    15. P. Gregg & P. Kristensen & A. Rubano & S. Golowich & L. Marrucci & S. Ramachandran, 2019. "Enhanced spin orbit interaction of light in highly confining optical fibers for mode division multiplexing," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    16. Pietzcker, Robert & Osorio, Sebastian & Rodrigues, Renato, 2021. "Tightening EU ETS targets in line with the European Green Deal: Impacts on the decarbonization of the EU power sector," EconStor Preprints 222579, ZBW - Leibniz Information Centre for Economics, revised 2021.
    17. Kunta Yoshikawa & Hayato Kawasaki & Wataru Yoshida & Toru Irie & Katsunori Konishi & Kunihiro Nakano & Toshihiko Uto & Daisuke Adachi & Masanori Kanematsu & Hisashi Uzu & Kenji Yamamoto, 2017. "Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%," Nature Energy, Nature, vol. 2(5), pages 1-8, May.
    18. Chhawchharia, Saransch & Sahoo, Sarat Kumar & Balamurugan, M. & Sukchai, Sukruedee & Yanine, Fernando, 2018. "Investigation of wireless power transfer applications with a focus on renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 888-902.
    19. Lu, Ping & Leung, Puiki & Su, Huaneng & Yang, Weiwei & Xu, Qian, 2021. "Materials, performance, and system design for integrated solar flow batteries – A mini review," Applied Energy, Elsevier, vol. 282(PB).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mao, Yufeng & Zhong, Mingliang & Wang, Ji X., 2023. "Dimensionless study of phase-change-based thermal protection for pulsed electromagnetic machines: Towards heat absorption-dissipation matching," Applied Energy, Elsevier, vol. 352(C).
    2. Wang, Ji-Xiang & Qian, Jian & Wang, Ni & Zhang, He & Cao, Xiang & Liu, Feifan & Hao, Guanqiu, 2023. "A scalable micro-encapsulated phase change material and liquid metal integrated composite for sustainable data center cooling," Renewable Energy, Elsevier, vol. 213(C), pages 75-85.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Xiaoyuan & Chen, Yu & Zhang, Mingshun & Jiang, Shan & Gou, Huayu & Pang, Zhou & Shen, Boyang, 2021. "Hospital-oriented quad-generation (HOQG)—A combined cooling, heating, power and gas (CCHPG) system," Applied Energy, Elsevier, vol. 300(C).
    2. Zhong, Meirui & Zhang, Rui & Ren, Xiaohang, 2023. "The time-varying effects of liquidity and market efficiency of the European Union carbon market: Evidence from the TVP-SVAR-SV approach," Energy Economics, Elsevier, vol. 123(C).
    3. Tan, Xiujie & Sun, Qian & Wang, Meiji & Se Cheong, Tsun & Yan Shum, Wai & Huang, Jinpeng, 2022. "Assessing the effects of emissions trading systems on energy consumption and energy mix," Applied Energy, Elsevier, vol. 310(C).
    4. Shen, Boyang & Chen, Yu & Li, Chuanyue & Wang, Sheng & Chen, Xiaoyuan, 2021. "Superconducting fault current limiter (SFCL): Experiment and the simulation from finite-element method (FEM) to power/energy system software," Energy, Elsevier, vol. 234(C).
    5. Martina Ricci & Marcello Benvenuto & Stefano Gino Mosele & Roberto Pacciani & Michele Marconcini, 2022. "Predicting the Impact of Compressor Flexibility Improvements on Heavy-Duty Gas Turbines for Minimum and Base Load Conditions," Energies, MDPI, vol. 15(20), pages 1-14, October.
    6. Dong, Kangyin & Yang, Senmiao & Wang, Jianda & Nepal, Rabindra & Jamasb, Tooraj, 2024. "Does Geopolitical Risk Accelerate Climate Vulnerability? New Evidence from the European Green Deal," Working Papers 15-2024, Copenhagen Business School, Department of Economics.
    7. Qu, Chunzi & Bang, Rasmus Noss, 2024. "European Grid Development Modeling and Analysis: Established Frameworks, Research Trends, and Future Opportunities," Discussion Papers 2024/11, Norwegian School of Economics, Department of Business and Management Science.
    8. Hänsel, Martin C. & Franks, Max & Kalkuhl, Matthias & Edenhofer, Ottmar, 2022. "Optimal carbon taxation and horizontal equity: A welfare-theoretic approach with application to German household data," Journal of Environmental Economics and Management, Elsevier, vol. 116(C).
    9. Pashchenko, Dmitry & Mustafin, Ravil & Karpilov, Igor, 2022. "Ammonia-fired chemically recuperated gas turbine: Thermodynamic analysis of cycle and recuperation system," Energy, Elsevier, vol. 252(C).
    10. Jan-Philipp Sasse & Evelina Trutnevyte, 2023. "A low-carbon electricity sector in Europe risks sustaining regional inequalities in benefits and vulnerabilities," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    11. Sasse, Jan-Philipp & Trutnevyte, Evelina, 2023. "Cost-effective options and regional interdependencies of reaching a low-carbon European electricity system in 2035," Energy, Elsevier, vol. 282(C).
    12. Brown, T. & Reichenberg, L., 2021. "Decreasing market value of variable renewables can be avoided by policy action," Energy Economics, Elsevier, vol. 100(C).
    13. Ning Ren & Xiufan Zhang & Decheng Fan, 2022. "Influencing Factors and Realization Path of Power Decarbonization—Based on Panel Data Analysis of 30 Provinces in China from 2011 to 2019," IJERPH, MDPI, vol. 19(23), pages 1-24, November.
    14. Mariusz Pyra, 2023. "Simulation of the Progress of the Decarbonization Process in Poland’s Road Transport Sector," Energies, MDPI, vol. 16(12), pages 1-21, June.
    15. Luo, Shihua & Hu, Weihao & Liu, Wen & Zhang, Zhenyuan & Bai, Chunguang & Huang, Qi & Chen, Zhe, 2022. "Study on the decarbonization in China's power sector under the background of carbon neutrality by 2060," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    16. Finke, Jonas & Bertsch, Valentin, 2022. "Implementing a highly adaptable method for the multi-objective optimisation of energy systems," MPRA Paper 115504, University Library of Munich, Germany.
    17. Che, Shuai & Wang, Jun & Chen, Honghang, 2023. "Can China's decentralized energy governance reduce carbon emissions? Evidence from new energy demonstration cities," Energy, Elsevier, vol. 284(C).
    18. Buberger, Johannes & Kersten, Anton & Kuder, Manuel & Eckerle, Richard & Weyh, Thomas & Thiringer, Torbjörn, 2022. "Total CO2-equivalent life-cycle emissions from commercially available passenger cars," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    19. Shirley Thompson, 2023. "Strategic Analysis of the Renewable Electricity Transition: Power to the World without Carbon Emissions?," Energies, MDPI, vol. 16(17), pages 1-34, August.
    20. Kamila Pronińska & Krzysztof Księżopolski, 2021. "Baltic Offshore Wind Energy Development—Poland’s Public Policy Tools Analysis and the Geostrategic Implications," Energies, MDPI, vol. 14(16), pages 1-17, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:322:y:2022:i:c:s0306261922008388. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.