IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v305y2024ics0360544224020504.html
   My bibliography  Save this article

Enhancing carbon sequestration efficiency and safety through albumin-optimized CO2 hydrate distribution and geological layer stability: An innovative approach

Author

Listed:
  • Yang, Lei
  • Gao, Peng
  • Xia, Yongqiang
  • Pang, Weixin
  • Li, Qingping
  • Zhang, Lunxiang
  • Zhao, Jiafei
  • Song, Yongchen

Abstract

The persistently high global CO2 emissions are exacerbating the greenhouse effect issue. Scientists have explored methods such as carbon sequestration via subsea hydrate formation in response to global warming. However, this method faces a series of challenges when injecting CO2 on a large scale, including the slow formation rate of CO2 hydrates and potential leakage risks. Specially, the direct injection of promoters could lead to excessively high concentrations of additives close to the injection wells. This would consequently accelerate the local hydrate conversion, potentially causing reservoir blockage problems. The current study proposes a novel strategy involving additives that exhibit varying effects with concentrations. The high-concentration areas close to the wellbore can maintain the permeability by inhibiting hydrate formation; while the reduced concentration further away upon gas migration facilitates the rapid formation of CO2 hydrates. We successfully demonstrate the spatial and temporal differences in hydrate formation when using such additives. This can also facilitate the rapid formation of a dense hydrate cap layer over the reservoir, potentially preventing the leakage of CO2 gas. A new type of additive based on egg albumin was developed, which possesses the dual function and exhibits good biocompatibility and specific reservoir stability.

Suggested Citation

  • Yang, Lei & Gao, Peng & Xia, Yongqiang & Pang, Weixin & Li, Qingping & Zhang, Lunxiang & Zhao, Jiafei & Song, Yongchen, 2024. "Enhancing carbon sequestration efficiency and safety through albumin-optimized CO2 hydrate distribution and geological layer stability: An innovative approach," Energy, Elsevier, vol. 305(C).
  • Handle: RePEc:eee:energy:v:305:y:2024:i:c:s0360544224020504
    DOI: 10.1016/j.energy.2024.132276
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224020504
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132276?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Beatrice Castellani, 2023. "Potential Pathway for Reliable Long-Term CO 2 Storage as Clathrate Hydrates in Marine Environments," Energies, MDPI, vol. 16(6), pages 1-13, March.
    2. Wei, Rupeng & Xia, Yongqiang & Wang, Zifei & Li, Qingping & Lv, Xin & Leng, Shudong & Zhang, Lunxiang & Zhang, Yi & Xiao, Bo & Yang, Shengxiong & Yang, Lei & Zhao, Jiafei & Song, Yongchen, 2022. "Long-term numerical simulation of a joint production of gas hydrate and underlying shallow gas through dual horizontal wells in the South China Sea," Applied Energy, Elsevier, vol. 320(C).
    3. Jyoti Shanker Pandey & Saad Khan & Nicolas von Solms, 2022. "Screening of Low-Dosage Methanol as a Hydrate Promoter," Energies, MDPI, vol. 15(18), pages 1-20, September.
    4. Sun, You-Hong & Zhang, Guo-Biao & Carroll, John J. & Li, Sheng-Li & Jiang, Shu-Hui & Guo, Wei, 2018. "Experimental investigation into gas recovery from CH4-C2H6-C3H8 hydrates by CO2 replacement," Applied Energy, Elsevier, vol. 229(C), pages 625-636.
    5. Yang, Lei & Shi, Kangji & Qu, Aoxing & Liang, Huiyong & Li, Qingping & Lv, Xin & Leng, Shudong & Liu, Yanzhen & Zhang, Lunxiang & Liu, Yu & Xiao, Bo & Yang, Shengxiong & Zhao, Jiafei & Song, Yongchen, 2023. "The locally varying thermodynamic driving force dominates the gas production efficiency from natural gas hydrate-bearing marine sediments," Energy, Elsevier, vol. 276(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yanzhen & Qi, Huiping & Liang, Huiyong & Yang, Lei & Lv, Xin & Qiao, Fen & Wang, Junfeng & Liu, Yanbo & Li, Qingping & Zhao, Jiafei, 2024. "Influence mechanism of interfacial organic matter and salt system on carbon dioxide hydrate nucleation in porous media," Energy, Elsevier, vol. 290(C).
    2. Qu, Aoxing & Guan, Dawei & Jiang, Zhibo & Fan, Qi & Li, Qingping & Zhang, Lunxiang & Zhao, Jiafei & Yang, Lei & Song, Yongchen, 2023. "Sensible heat aided gas production from gas hydrate with an underlying water-rich shallow gas layer," Energy, Elsevier, vol. 284(C).
    3. Wei, Rupeng & Xia, Yongqiang & Qu, Aoxing & Fan, Qi & Li, Qingping & Lv, Xin & Leng, Shudong & Li, Xingbo & Zhang, Lunxiang & Zhang, Yi & Zhao, Jiafei & Yang, Lei & Sun, Xiang & Song, Yongchen, 2024. "Sustained production of gas hydrate through hybrid depressurization scheme with enhanced energy efficiency and mitigated ice blockage," Energy, Elsevier, vol. 289(C).
    4. Yang, Lei & Wang, Zifei & Shi, Kangji & Ge, Yang & Li, Qingping & Leng, Shudong & Zhou, Yi & Zhang, Lunxiang & Zhao, Jiafei & Song, Yongchen, 2024. "Upward migration of the shallow gas enhances the production behavior from the vertical heterogeneous hydrate-bearing marine sediments," Energy, Elsevier, vol. 307(C).
    5. Wang, Xiaolin & Zhang, Fengyuan & LipiƄski, Wojciech, 2020. "Research progress and challenges in hydrate-based carbon dioxide capture applications," Applied Energy, Elsevier, vol. 269(C).
    6. Guan, Dawei & Qu, Aoxing & Gao, Peng & Fan, Qi & Li, Qingping & Zhang, Lunxiang & Zhao, Jiafei & Song, Yongchen & Yang, Lei, 2023. "Improved temperature distribution upon varying gas producing channel in gas hydrate reservoir: Insights from the Joule-Thomson effect," Applied Energy, Elsevier, vol. 348(C).
    7. Shi, Kangji & Wang, Zifei & Jia, Yuxin & Li, Qingping & Lv, Xin & Wang, Tian & Zhang, Lunxiang & Liu, Yu & Zhao, Jiafei & Song, Yongchen & Yang, Lei, 2022. "Effects of the vertical heterogeneity on the gas production behavior from hydrate reservoirs simulated by the fine sediments from the South China Sea," Energy, Elsevier, vol. 255(C).
    8. Kwanghee Jeong & Bruce W. E. Norris & Eric F. May & Zachary M. Aman, 2023. "Hydrate Formation from Joule Thomson Expansion Using a Single Pass Flowloop," Energies, MDPI, vol. 16(22), pages 1-16, November.
    9. Alberto Maria Gambelli, 2024. "Deviation of Phase Boundary Conditions for Hydrates of Small-Chain Hydrocarbons (CH 4 , C 2 H 6 and C 3 H 8 ) When Formed Within Porous Sediments," Energies, MDPI, vol. 17(22), pages 1-17, November.
    10. Wang, Haijun & Liu, Weiguo & Wu, Peng & Pan, Xuelian & You, Zeshao & Lu, Jingsheng & Li, Yanghui, 2023. "Gas recovery from marine hydrate reservoir: Experimental investigation on gas flow patterns considering pressure effect," Energy, Elsevier, vol. 275(C).
    11. Yang, Mingjun & Wang, Xinru & Pang, Weixin & Li, Kehan & Yu, Tao & Chen, Bingbing & Song, Yongchen, 2023. "The inhibit behavior of fluids migration on gas hydrate re-formation in depressurized-decomposed-reservoir," Energy, Elsevier, vol. 282(C).
    12. Jin, Guangrong & Liu, Jie & Su, Zheng & Feng, Chuangji & Cheng, Sanshan & Zhai, Haizhen & Liu, Lihua, 2024. "Gas production from a promising reservoir of the hydrate with associated and shallow gas layers in the low permeable sediments," Energy, Elsevier, vol. 295(C).
    13. Liu, Yanzhen & Li, Qingping & Lv, Xin & Yang, Lei & Wang, Junfeng & Qiao, Fen & Zhao, Jiafei & Qi, Huiping, 2023. "The passive effect of clay particles on natural gas hydrate kinetic inhibitors," Energy, Elsevier, vol. 267(C).
    14. Gu, Yuhang & Sun, Jiaxin & Qin, Fanfan & Ning, Fulong & Cao, Xinxin & Liu, Tianle & Qin, Shunbo & Zhang, Ling & Jiang, Guosheng, 2023. "Enhancing gas recovery from natural gas hydrate reservoirs in the eastern Nankai Trough: Deep depressurization and underburden sealing," Energy, Elsevier, vol. 262(PB).
    15. Wang, Feifei & Shen, Kaixiang & Zhang, Zhilei & Zhang, Di & Wang, Zhenqing & Wang, Zizhen, 2023. "Numerical simulation of natural gas hydrate development with radial horizontal wells based on thermo-hydro-chemistry coupling," Energy, Elsevier, vol. 272(C).
    16. Yang, Lei & Guan, Dawei & Qu, Aoxing & Li, Qingping & Ge, Yang & Liang, Huiyong & Dong, Hongsheng & Leng, Shudong & Liu, Yanzhen & Zhang, Lunxiang & Zhao, Jiafei & Song, Yongchen, 2023. "Thermotactic habit of gas hydrate growth enables a fast transformation of melting ice," Applied Energy, Elsevier, vol. 331(C).
    17. Feng, Yu & Han, Yuze & Gao, Peng & Kuang, Yangmin & Yang, Lei & Zhao, Jiafei & Song, Yongchen, 2024. "Study of hydrate nucleation and growth aided by micro-nanobubbles: Probing the hydrate memory effect," Energy, Elsevier, vol. 290(C).
    18. Panagiotis Kastanidis & George E. Romanos & Athanasios K. Stubos & Georgia Pappa & Epaminondas Voutsas & Ioannis N. Tsimpanogiannis, 2024. "Evaluation of a Simplified Model for Three-Phase Equilibrium Calculations of Mixed Gas Hydrates," Energies, MDPI, vol. 17(2), pages 1-22, January.
    19. Weixin Pang & Yang Ge & Mingqiang Chen & Xiaohan Zhang & Huiyun Wen & Qiang Fu & Xin Lei & Qingping Li & Shouwei Zhou, 2024. "Large-Scale Experimental Investigation of Hydrate-Based Carbon Dioxide Sequestration," Energies, MDPI, vol. 17(13), pages 1-17, June.
    20. Zhao, Yang & Qu, Aoxing & Yang, Mingzhao & Dong, Hongsheng & Ge, Yang & Li, Qingping & Liu, Yanzhen & Zhang, Lunxiang & Liu, Yu & Yang, Lei & Song, Yongchen & Zhao, Jiafei, 2024. "Modified balsa wood with natural, flexible porous structure for gas storage," Applied Energy, Elsevier, vol. 353(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:305:y:2024:i:c:s0360544224020504. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.