IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v306y2022ipbs0306261921014161.html
   My bibliography  Save this article

Novel modular multilevel converter-based five-terminal MV/LV hybrid AC/DC microgrids with improved operation capability under unbalanced power distribution

Author

Listed:
  • Xiao, Qian
  • Mu, Yunfei
  • Jia, Hongjie
  • Jin, Yu
  • Yu, Xiaodan
  • Teodorescu, Remus
  • Guerrero, Josep M.

Abstract

Conventionally, the multilevel converter-based multi-terminal hybrid microgrids require a large number of power switches and have a limited operation capability under unbalanced power distribution in medium and low voltage (MV/LV) AC/DC microgrids. To solve this issue, this paper proposes the novel modular multilevel converter (MMC)-based five-terminal MV/LV hybrid AC/DC microgrids. The proposed hybrid microgrids realize the interconnection between the medium-voltage AC (MVAC), MVDC, low voltage AC (LVAC), and two LVDC terminals. In addition, the MVAC grid is connected to the AC terminal of MMC, and the MVDC microgrid is connected to the DC terminal of MMC through a dual active bridge (DAB) converter. Based on MMC, the compact interlinking converters are established, providing three LVDC terminals, which are connected to two LVDC microgrids and one LVAC microgrid through a DC/AC converter. Compared with the conventional MMC-based hybrid microgrids, the proposed topology can significantly reduce the number of power switches. Moreover, to overcome the control challenge of arm energy balancing in MMC and meet the requirement of different operation modes in microgrids, a hierarchical energy control method is proposed, where the low circulating currents are injected to balance the arm energy. Therefore, the system operation capability can be improved under unbalanced power distribution. Validation results in different conditions (power step, power reversal, and unbalanced MVAC voltages) indicate that by the proposed method, the arm energy and capacitor voltages in MMC are well balanced, and the proposed hybrid AC/DC microgrids can operate normally at different modes.

Suggested Citation

  • Xiao, Qian & Mu, Yunfei & Jia, Hongjie & Jin, Yu & Yu, Xiaodan & Teodorescu, Remus & Guerrero, Josep M., 2022. "Novel modular multilevel converter-based five-terminal MV/LV hybrid AC/DC microgrids with improved operation capability under unbalanced power distribution," Applied Energy, Elsevier, vol. 306(PB).
  • Handle: RePEc:eee:appene:v:306:y:2022:i:pb:s0306261921014161
    DOI: 10.1016/j.apenergy.2021.118140
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921014161
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.118140?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiao, Qian & Mu, Yunfei & Jia, Hongjie & Jin, Yu & Hou, Kai & Yu, Xiaodan & Teodorescu, Remus & Guerrero, Josep M., 2021. "Modular multilevel converter based multi-terminal hybrid AC/DC microgrid with improved energy control method," Applied Energy, Elsevier, vol. 282(PA).
    2. Riverso, Stefano & Tucci, Michele & Vasquez, Juan C. & Guerrero, Josep M. & Ferrari-Trecate, Giancarlo, 2018. "Stabilizing plug-and-play regulators and secondary coordinated control for AC islanded microgrids with bus-connected topology," Applied Energy, Elsevier, vol. 210(C), pages 914-924.
    3. Liu, Chuang & Li, Xuejiao & Zhi, Yuemei & Cai, Guowei, 2018. "New breed of solid-state transformer mainly combing hybrid cascaded multilevel converter with resonant DC-DC converters," Applied Energy, Elsevier, vol. 210(C), pages 724-736.
    4. Chen, Sirui & Li, Peng & Ji, Haoran & Yu, Hao & Yan, Jinyue & Wu, Jianzhong & Wang, Chengshan, 2021. "Operational flexibility of active distribution networks with the potential from data centers," Applied Energy, Elsevier, vol. 293(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Liwei & Preindl, Matthias, 2023. "Reconfigurable hybrid micro-grid with standardized power module for high performance energy conversion," Applied Energy, Elsevier, vol. 351(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ji, Haoran & Chen, Sirui & Yu, Hao & Li, Peng & Yan, Jinyue & Song, Jieying & Wang, Chengshan, 2022. "Robust operation for minimizing power consumption of data centers with flexible substation integration," Energy, Elsevier, vol. 248(C).
    2. Gui, Yonghao & Wei, Baoze & Li, Mingshen & Guerrero, Josep M. & Vasquez, Juan C., 2018. "Passivity-based coordinated control for islanded AC microgrid," Applied Energy, Elsevier, vol. 229(C), pages 551-561.
    3. Vavilapalli, Sridhar & Umashankar, S. & Sanjeevikumar, P. & Ramachandaramurthy, Vigna K. & Mihet-Popa, Lucian & Fedák, Viliam, 2018. "Three-stage control architecture for cascaded H-Bridge inverters in large-scale PV systems – Real time simulation validation," Applied Energy, Elsevier, vol. 229(C), pages 1111-1127.
    4. Guido Cavraro & Tommaso Caldognetto & Ruggero Carli & Paolo Tenti, 2019. "A Master/Slave Approach to Power Flow and Overvoltage Control in Low-Voltage Microgrids," Energies, MDPI, vol. 12(14), pages 1-22, July.
    5. Wang, Kaifeng & Ye, Lin & Yang, Shihui & Deng, Zhanfeng & Song, Jieying & Li, Zhuo & Zhao, Yongning, 2023. "A hierarchical dispatch strategy of hybrid energy storage system in internet data center with model predictive control," Applied Energy, Elsevier, vol. 331(C).
    6. Ye, Guisen & Gao, Feng & Fang, Jingyang, 2022. "A mission-driven two-step virtual machine commitment for energy saving of modern data centers through UPS and server coordinated optimizations," Applied Energy, Elsevier, vol. 322(C).
    7. Lv, Chaoxian & Liang, Rui & Zhang, Ge & Zhang, Xiaotong & Jin, Wei, 2023. "Energy accommodation-oriented interaction of active distribution network and central energy station considering soft open points," Energy, Elsevier, vol. 268(C).
    8. Xianyong Zhang & Yaohong Huang & Li Li & Wei-Chang Yeh, 2018. "Power and Capacity Consensus Tracking of Distributed Battery Storage Systems in Modular Microgrids," Energies, MDPI, vol. 11(6), pages 1-25, June.
    9. Chen, Boyu & Che, Yanbo & Zheng, Zhihao & Zhao, Shuaijun, 2023. "Multi-objective robust optimal bidding strategy for a data center operator based on bi-level optimization," Energy, Elsevier, vol. 269(C).
    10. Liu, Xiaoou, 2024. "Research on collaborative scheduling of internet data center and regional integrated energy system based on electricity-heat-water coupling," Energy, Elsevier, vol. 292(C).
    11. Heidari, Saeed & Hatami, Alireza & Eskandari, Mohsen, 2022. "An intelligent capacity management system for interface converter in AC-DC hybrid microgrids," Applied Energy, Elsevier, vol. 316(C).
    12. Alonso de Jesús Chica Leal & César Leonardo Trujillo Rodríguez & Francisco Santamaria, 2020. "Comparative of Power Calculation Methods for Single-Phase Systems under Sinusoidal and Non-Sinusoidal Operation," Energies, MDPI, vol. 13(17), pages 1-20, August.
    13. Dong, Chaoyu & Gao, Qingbin & Xiao, Qian & Yu, Xiaodan & Pekař, Libor & Jia, Hongjie, 2018. "Time-delay stability switching boundary determination for DC microgrid clusters with the distributed control framework," Applied Energy, Elsevier, vol. 228(C), pages 189-204.
    14. Abulanwar, Sayed & Ghanem, Abdelhady & Rizk, Mohammad E.M. & Hu, Weihao, 2021. "Adaptive synergistic control strategy for a hybrid AC/DC microgrid during normal operation and contingencies," Applied Energy, Elsevier, vol. 304(C).
    15. An, Su & Wang, Honglei & Leng, Xiaoxia, 2022. "Optimal operation of multi-micro energy grids under distribution network in Southwest China," Applied Energy, Elsevier, vol. 309(C).
    16. Kofinas, P. & Dounis, A.I. & Vouros, G.A., 2018. "Fuzzy Q-Learning for multi-agent decentralized energy management in microgrids," Applied Energy, Elsevier, vol. 219(C), pages 53-67.
    17. Lei Su & Wenxiang Wu & Wanli Feng & Junda Qin & Yuqi Ao, 2024. "Collaborative Planning of Distribution Network, Data Centres and Renewable Energy in the Power Distribution IoT via Interval Optimization," Energies, MDPI, vol. 17(15), pages 1-26, July.
    18. Cao, Yujie & Cheng, Ming & Zhang, Sufang & Mao, Hongju & Wang, Peng & Li, Chao & Feng, Yihui & Ding, Zhaohao, 2022. "Data-driven flexibility assessment for internet data center towards periodic batch workloads," Applied Energy, Elsevier, vol. 324(C).
    19. Khosravi, Nima & Baghbanzadeh, Rasoul & Oubelaid, Adel & Tostado-Véliz, Marcos & Bajaj, Mohit & Hekss, Zineb & Echalih, Salwa & Belkhier, Youcef & Houran, Mohamad Abou & Aboras, Kareem M., 2023. "A novel control approach to improve the stability of hybrid AC/DC microgrids," Applied Energy, Elsevier, vol. 344(C).
    20. Bao, Minglei & Hui, Hengyu & Ding, Yi & Sun, Xiaocong & Zheng, Chenghang & Gao, Xiang, 2023. "An efficient framework for exploiting operational flexibility of load energy hubs in risk management of integrated electricity-gas systems," Applied Energy, Elsevier, vol. 338(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:306:y:2022:i:pb:s0306261921014161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.