IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v306y2022ipbs0306261921014082.html
   My bibliography  Save this article

Preparation of porous carbon materials from biomass pyrolysis vapors for hydrogen storage

Author

Listed:
  • Zhang, Huiyan
  • Zhu, Yiwen
  • Liu, Qingyu
  • Li, Xiaowen

Abstract

A novel method for preparing porous carbon materials from biomass pyrolysis vapors with calcium citrate template has been proposed. The effects of pyrolysis temperature, pyrolysis heating rate and carbon-containing precursor preparation temperature on the yield of biomass pyrolysis products, composition of light bio-oil and structure of porous carbons were investigated. The physicochemical characterization and hydrogen adsorption experiments were carried out for the prepared porous carbons. The carbonization mechanism of the carbon-containing precursor was studied and a five-stage reaction kinetic model was established by Gaussian peak separation method according to the DTG curves. Under the optimal conditions of pyrolysis temperature (823 K), heating rate (10 K/min) and carbon-containing precursor preparation temperature (473 K), the prepared porous carbon material has the largest specific surface area of 1703 m2/g, relatively high micropore volume of 0.51 cm3/g and microporosity of 24.17%. The hydrogen adsorption capacity of the carbon material can reach 170.12 cm3/g (1.53 wt%) at 77 K at atmospheric pressure. This paper provides a novel and environmental-friendly method for the preparation of porous carbon materials, and also presents a new way for the utilization of biomass pyrolysis vapors before condensation.

Suggested Citation

  • Zhang, Huiyan & Zhu, Yiwen & Liu, Qingyu & Li, Xiaowen, 2022. "Preparation of porous carbon materials from biomass pyrolysis vapors for hydrogen storage," Applied Energy, Elsevier, vol. 306(PB).
  • Handle: RePEc:eee:appene:v:306:y:2022:i:pb:s0306261921014082
    DOI: 10.1016/j.apenergy.2021.118131
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921014082
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.118131?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Trubetskaya, Anna & Timko, Michael T & Umeki, Kentaro, 2020. "Prediction of fast pyrolysis products yields using lignocellulosic compounds and ash contents," Applied Energy, Elsevier, vol. 257(C).
    2. Wang, Chu & Ding, Haozhi & Zhang, Yiming & Zhu, Xifeng, 2020. "Analysis of property variation and stability on the aging of bio-oil from fractional condensation," Renewable Energy, Elsevier, vol. 148(C), pages 720-728.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fuquan Song & Lintao Huang & Heying Ding & Shiming Zhang & Jinbiao Yu, 2023. "In Situ Ni-Doped Hierarchically Porous Carbon Nanofibers Derived from Polyacrylonitrile/Pitch for Hydrogen Storage at Ambient Temperature," Sustainability, MDPI, vol. 15(11), pages 1-13, May.
    2. Wang, Jia & Jiang, Jianchun & Li, Dongxian & Meng, Xianzhi & Zhan, Guowu & Wang, Yunpu & Zhang, Aihua & Sun, Yunjuan & Ruan, Roger & Ragauskas, Arthur J., 2022. "Creating values from wastes: Producing biofuels from waste cooking oil via a tandem vapor-phase hydrotreating process," Applied Energy, Elsevier, vol. 323(C).
    3. Wu, Kai & Yang, Ke & Zhu, Yiwen & Luo, Bingbing & Chu, Chenyang & Li, Mingfan & Zhang, Yuanjian & Zhang, Huiyan, 2023. "The co-pyrolysis interactionsof isolated lignins and cellulose by experiments and theoretical calculations," Energy, Elsevier, vol. 263(PC).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Qing & Guo, Qinghua & Umeki, Kentaro & Ding, Lu & Wang, Fuchen & Yu, Guangsuo, 2021. "Soot formation during biomass gasification: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    2. Chen, Tao & Sjöblom, Jonas & Ström, Henrik, 2022. "Numerical investigations of soot generation during wood-log combustion," Applied Energy, Elsevier, vol. 325(C).
    3. Kim, Hoyong & Sriram, Subash & Fang, Tiegang & Kelley, Stephen & Park, Sunkyu, 2021. "An eco-friendly approach for blending of fast-pyrolysis bio-oil in petroleum-derived fuel by controlling ash content of loblolly pine," Renewable Energy, Elsevier, vol. 179(C), pages 2063-2070.
    4. Costa, Juliana E.B. & Barbosa, Andrey S. & Melo, Marcus A.F. & Melo, Dulce M.A. & Medeiros, Rodolfo L.B.A. & Braga, Renata M., 2022. "Renewable aromatics through catalytic pyrolysis of coconut fiber (Cocos nucífera Linn.) using low cost HZSM-5," Renewable Energy, Elsevier, vol. 191(C), pages 439-446.
    5. Wu, Kai & Yang, Ke & Zhu, Yiwen & Luo, Bingbing & Chu, Chenyang & Li, Mingfan & Zhang, Yuanjian & Zhang, Huiyan, 2023. "The co-pyrolysis interactionsof isolated lignins and cellulose by experiments and theoretical calculations," Energy, Elsevier, vol. 263(PC).
    6. Hu, Hangli & Luo, Yanru & Zou, Jianfeng & Zhang, Shukai & Yellezuome, Dominic & Rahman, Md Maksudur & Li, Yingkai & Li, Chong & Cai, Junmeng, 2022. "Exploring aging kinetic mechanisms of bio-oil from biomass pyrolysis based on change in carbonyl content," Renewable Energy, Elsevier, vol. 199(C), pages 782-790.
    7. Wu, Haijun & Shakeel, Usama & Zhang, Quan & Zhang, Kai & Xu, Xia & Yuan, Yamei & Xu, Jian, 2022. "Catalytic degradation of poplar by Na2CO3 and Na2CO3/Fe under various hydrothermal liquefaction processes," Energy, Elsevier, vol. 259(C).
    8. Zheng, Shu & Liu, Hao & He, Yuzhen & Yang, Yu & Sui, Ran & Lu, Qiang, 2023. "Combustion of biomass pyrolysis gas: Roles of radiation reabsorption and water content," Renewable Energy, Elsevier, vol. 205(C), pages 864-872.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:306:y:2022:i:pb:s0306261921014082. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.